* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download ppt - BIL242
Survey
Document related concepts
Transcript
VERİ TABANI DERS NOTLARI Relational Model (İlişkisel Model) References • ER examples from “Elmasri, Navathe, Fund. of Database Systems, 6th ed., Addison Wesley” 1 İlişkisel Veri Modeli (Relational Model) İlişkisel Model’de Kısıtlamalar (Constraints) İlişkisel Model’de Şema (Schemas) ve Olgu Dönüştürme: Varlık-Bağıntı Modeli (E)ER İlişkisel Model (RM) ◦ ◦ ◦ ◦ Varlık Kümelerini dönüştürme Bağıntı Kümelerini dönüştürme Genellemelerin dönüştürülmesi Kümelemelerin dönüştürülmesi Sli de 52 İlişkisel Model, bildirim (declarative) esaslı veri işlemeye imkan sağlayan bir modeldir. ◦ Bildirim esaslı model, kullanıcıya «NE İSTEDİĞİNİ» aktarma imkanı sağlar. Verinin nasıl yerleşeceği veya nasıl erişileceği ile ilgilenilmez. Diğer bir ifade ile, donanım ve gerçekleştirim ortamından veri bağımsızlığı (data independence) sağlanmış olur. İlişkisel model gerçeklemeleri SQL isimli veri işleme (tanımlama / sorgulama) dili kullanır. Model, ilk geliştiricisi Edgar F. Codd (IBM Research) tarafından şu klasik makalede tanıtılmış:"A Relational Model of Data for Large Shared Data Banks," Communications of the ACM, June 1970.Bu makale, veritabanı yönetimi alanında inkilap niteliğinde sonuçlara yol açmış ve yazarına (Dr. Codd) ACM Turing Award ödülünü kazandırmıştır(1981) Öncü (tarihi) ilişkisel VTYS örnekleri: System R (IBM) ve Ingres (UC-Berkeley) İlişkisel veri modeli, ilişki (relation) kavramı üzerine bina edilmiş. İlişki (relation) kavramı, özde matematiksel bir kavram ve küme (set) kavramı üstüne bina edilmiş. ◦ Veri yönetiminde ilişkisel yaklaşımın gücü, ilişkiler teorisi ve biçimsel temellere oturmuş olmasından kaynaklanmaktadır. ◦ Pratikte, SQL tabanlı standart bir model var. ◦ Fakat, biçimsel model ile pratik model arasında çok önemli farklılıklar var. Biçimsel modelin tamamen gerçeklenmesi oldukça zordur ve çok nadirdir. İlişkisel veri modeli, kullanıcıların VT’nındaki bütün «veri ve bağıntıları» tablolar (çizelgeler) biçiminde görmesine izin verir. Böylece, "ilişkisel modele dayalı bir VT’nın temel yapı taşı TABLO (ÇİZELGE)dir" denilebilir. Sli de 54 RM verileri, ilişkiler topluluğu olarak modeller. İlişki (relation): iki boyutlu bir değerler tablosu (table of values). İlişkide, satır kümesi var (set of rows). Satırlar tuples-çoklu diye de adlandırılır. Satır (çoklu) tekrarına izin verilmez. Satırlar (çoklular) bir set oluşturur, o zaman sıralı olması koşulu yoktur. Her satırdaki veri elemanları belirli gerçekleri (nesne yada bağıntı) gösterir (entity or relationship). Her kolon (column) bir niteliği gösterir. Kolon başlığı, o kolondaki verinin anlamını belirtir (nitelik-attribute). ◦ Nitelik yalın değer içermeli yani çok-değerli niteliğe izin yok! ◦ Her nitelik bir tanım kümesi (domain, type) elemanlarından bir değer alır. ◦ Niteliklerin satır içindeki sıraları önemli değildir. Bu sıranın farklı olması satırları birbirinden farklı kılmaz. Örneğin: <0,a> satırı, <a,o> ile aynıdır; yeterki değerin hangi nieliğe ait olduğu belli olsun. Sli de 56 Her ilişkinin biricik (unique) bir adı vardır. Key of a Relation: ◦ The key uniquely identifies that row in the table. In the STUDENT table, SSN is the key. ◦ Sometimes row-ids or sequential numbers are assigned as keys to identify the rows in a table. Called artificial key or surrogate key Sli de 57 Bir ilişki şeması (schema, description): ◦ R(A1, A2, .....An) biçiminde gösterilir. ◦ R ilişki adı (name ), A1, A2, ..., An ise ilişkinin nitelikleri(attributes) ◦ İlişkinin derecesi: ilişki şemasındaki nitelik sayısı ◦ Example: CUSTOMER (Cust-id, Cust-name, Address, Phone#) ilişki ismi: CUSTOMER ilişki derecesi: 4 Nitelikler: Cust-id, Cust-name, Address, Phone#. A relation is a set of tuples (rows). A tuple is an ordered set of values (enclosed in angled brackets ‘< … >’). Each value is derived from an appropriate domain. ◦ A row in the CUSTOMER relation is a 4-tuple and consists of four values: <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404)894-2000"> Domain: geçerli nitelik değer kümesi Example: “USA_phone_numbers” are the set of 10 digit phone numbers valid in the U.S. ◦ A domain has a data-type or a format defined for it. The USA_phone_numbers may have a format: (ddd)ddd-dddd where each d is a decimal digit. Dates have various formats such as year, month, date formatted as yyyy-mm-dd, or as dd mm,yyyy etc. ◦ The attribute name designates the role played by a domain in a relation: Used to interpret the meaning of the data elements corresponding to that attribute Example: The domain Date may be used to define two attributes named “Invoice-date” and “Payment-date” with different meanings Example: attribute Cust-name is defined over the domain of character strings of maximum length 25 dom(Cust-name) is varchar(25) The role these strings play in the CUSTOMER relation is that of the name of a customer. The relation state, r(R) is a subset of the Cartesian product of the domains of its attributes ◦ each domain contains set of all possible values the attribute can take. Formally, given R(A1, A2, .........., An) ◦ r(R) dom (A1) X dom (A2) X ....X dom(An) ◦ R(A1, A2, …, An) is the schema of the relation ◦ r(R): a specific state (or "value" or “population”) of relation R – this is a set of tuples (rows) r(R) = {t1, t2, …, tn} where each ti is an n-tuple ti = <v1, v2, …, vn> where each vj element-of dom(Aj) Let R(A1, A2) be a relation schema: ◦ Let dom(A1) = {0,1}, Let dom(A2) = {a,b,c} ◦ Then: dom(A1) X dom(A2) is all possible combinations: {<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> } The relation state r(R) dom(A1) X dom(A2) ◦ For example: r(R) could be {<0,a> , <0,b> , <1,c> } this is one possible state (population or extension) r of the relation R, defined over A1 and A2. It has three 2-tuples: <0,a> , <0,b> , <1,c> All values are considered atomic (indivisible). A special null value is used to represent values that are unknown or inapplicable to certain tuples. Notation: ◦ We refer to component values of a tuple t by:t[Ai] or t.Ai This is the value vi of attribute Ai for tuple t. ◦ A set S of relation schemas that belong to the same database. ◦ S is the name of the whole database schema ◦ S = {R1, R2, ..., Rn} ◦ R1, R2, …, Rn are the names of the individual relation schemas within the database S Here is the COMPANY database schema with 6 relation schemas: Sli de 511 Informal Terms (Pratik model) Table Formal Terms (Biçimsel model) Column Header Attribute All possible Column Values Row Domain Table Definition Schema of a Relation Populated Table State of the Relation Relation Tuple 12 Constraints are conditions that must hold on all valid relation states. There are three main types of constraints in the relational model: ◦ Key constraints (anahtar kısıtı) ◦ Entity integrity constraints (varlık bütünlük kısıtı) ◦ Referential integrity constraints (ima bütünlük kısıtı) Another implicit constraint is the domain constraint ◦ Every value in a tuple must be from the domain of its attribute (or it could be null, if allowed for that attribute) Yet another constraint is Semantic constraints.. Superkey of R: ◦ Is a set of attributes SK of R with the following condition: No two tuples in any valid relation state r(R) will have the same value for SK That is, for any distinct tuples t1 and t2 in r(R), t1[SK] t2[SK] This condition must hold in any valid state r(R) Key of R: ◦ The only way to access only 1 record. ◦ A "minimal" superkey ◦ That is, a key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey (does not possess the superkey uniqueness property) Example: Consider the CAR relation schema: ◦ CAR(State, Reg#, SerialNo, Make, Model, Year) ◦ CAR has two keys: Key1 = {State, Reg#} Key2 = {SerialNo} ◦ Both are also superkeys of CAR ◦ {SerialNo, Make} is a superkey but not a key. In general: ◦ Any key is a superkey (but not vice versa) ◦ Any set of attributes that includes a key is a superkey ◦ A minimal superkey is also a key If a relation has several candidate keys, one is chosen arbitrarily to be the primary key. ◦ The primary key attributes are underlined. Example: Consider the CAR relation schema: The primary key value is used to uniquely identify each tuple in a relation ◦ CAR(State, Reg#, SerialNo, Make, Model, Year) ◦ We chose SerialNo as the primary key ◦ Provides the tuple identity Also used to reference the tuple from another tuple ◦ General rule: Choose as primary key the smallest of the candidate keys (in terms of size) ◦ Not always applicable – choice is sometimes subjective Entity Integrity: ◦ The primary key attributes PK of each relation schema R in S cannot have null values in any tuple of r(R). This is because primary key values are used to identify the individual tuples. t[PK] null for any tuple t in r(R) If PK has several attributes, null is not allowed in any of these attributes ◦ Note: Other attributes of R may be constrained to disallow null values, even though they are not members of the primary key. (UNIQUE kısıtlaması) A constraint involving two relations (The previous constraints involve a single relation.) Used to specify a relationship among tuples in two relations: The referencing relation and the referenced relation. Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference the primary key attributes PK of the referenced relation R2. ◦ A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK]. A referential integrity constraint can be displayed in a relational database schema as a directed arc from R1.FK to R2. Statement of the constraint ◦ The value in the foreign key column (or columns) FK of the the referencing relation R1 can be either: (1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or (2) a null. ◦ In case (2), the FK in R1 should not be a part of its own primary key. Logical connection Semantic Integrity Constraints: ◦ based on application semantics and cannot be expressed by the model per se ◦ Example: “the max. no. of hours per employee for all projects he or she works on is 56 hrs per week” A constraint specification language may have to be used to express these. SQL-99 allows triggers and ASSERTIONS to express for some of these Actions in case of integrity violation In case of integrity violation, several actions can be taken: ◦ Cancel the operation that causes the violation (RESTRICT or REJECT option) ◦ Perform the operation but inform the user of the violation ◦ Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option) ◦ Execute a user-specified error-correction routine Specifying constraints in SQL ◦ NOT NULL may be specified on an attribute ◦ Key attributes can be specified via the PRIMARY KEY and UNIQUE phrases ◦ referential integrity constraints (foreign keys). ◦ Each relation schema can be displayed as a row of attribute names The name of the relation is written above the attribute names The primary key attribute (or attributes) will be underlined A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table ◦ Can also point the the primary key of the referenced relation for clarity COMPANY relational schema diagram: Sli de 520 Each relation will have many tuples in its current relation state The relational database state is a union of all the individual relation states Whenever the database is changed, a new state arises Basic operations (CRUD- Create, read, update and delete operations) for changing the database: ◦ INSERT a new tuple in a relation ◦ DELETE an existing tuple from a relation ◦ MODIFY an attribute of an existing tuple Next slide shows an example state for the COMPANY database Sli de 521 Populated database state for COMPANY INSERT a tuple. DELETE a tuple. MODIFY a tuple. Integrity constraints should not be violated by the update operations. Several update operations may have to be grouped together. Updates may propagate to cause other updates automatically. This may be necessary to maintain integrity constraints. Sli de 522 CREATE TABLE DEPT ( DNAME VARCHAR(10) NOT NULL, DNUMBER INTEGER NOT NULL, MGRSSN CHAR(9) DEFAULT ‘000’, MGRSTARTDATE CHAR(9), PRIMARY KEY (DNUMBER), UNIQUE (DNAME), FOREIGN KEY (MGRSSN) REFERENCES EMP ON DELETE SET DEFAULT ON UPDATE CASCADE); CREATE TABLE EMP( ENAME VARCHAR(30)NOT NULL, ESSN CHAR(9), BDATE DATE, DNO INTEGER DEFAULT 1, SUPERSSN CHAR(9), PRIMARY KEY (ESSN), FOREIGN KEY (DNO) REFERENCES DEPT ON DELETE SET DEFAULT ON UPDATE CASCADE, FOREIGN KEY (SUPERSSN) REFERENCES EMP ON DELETE SET NULL ON UPDATE CASCADE); ÖNEMLİ: Yukarıdaki SQL DDL tablo oluşturma komutları 2 farklı sıra için de (DEPT, EMP ve EMP,DEPT) çalıştırmak mümkün olmuyor. Çünkü imalar mevcut omayan başka bir tabloya işaret edemez. O yüzden, ima kısıtlarını temel tabloyu oluşturduktan sonra ALTER TABLE ... yardımcı komutu ile ekleyebilriz. Aynı durum DROP TABLE için de geçerli. Sli de 523 Aynı DİKKAT, INSERT TABLE için de geçerli. Bu sefer UPDATE komutu yardımı ile eksikler tamamlanır. O yüzden önceki sayfadaki VT’da eklemeler aşağıdaki gibi olması gerek: örneğin: INSERT INTO EMP VALUES ('James', '888665555','10-NOV-27',null,null); INSERT INTO EMP VALUES ('Franklin','T','Wong','333445555','08-DEC-45','638 Voss, Houston, TX','M',40000,'888665555',null); ..... INSERT INTO DEPT VALUES ('Research', 5, '333445555', '22-MAY-78'); INSERT INTO DEPT VALUES ('Headquarters', 1, '888665555', '19-JUN-71'); UPDATE employee SET dno = 5 WHERE ssn = '333445555'; UPDATE employee SET dno = 1 WHERE ssn = '888665555'; Sli de 524 Exercise-1 (Taken from Exercise 5.15) Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course: Draw a relational schema diagram STUDENT(SSN, Name, Major, Bdate) COURSE(Course#, Cname, Dept) ENROLL(SSN, Course#, Quarter, Grade) BOOK_ADOPTION(Course#, Quarter, Book_ISBN) TEXT(Book_ISBN, Book_Title, Publisher, Author) 25 Exercise-2 : possible violation when inserting INSERT may violate any of the constraints: ◦ Domain constraint: if one of the attribute values provided for the new tuple is not of the specified attribute domain ◦ Key constraint: if the value of a key attribute in the new tuple already exists in another tuple in the relation ◦ Referential integrity: if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation ◦ Entity integrity: if the primary key value is null in the new tuple Exercise-3: possible violation when deleting DELETE may violate only referential integrity: ◦ If the primary key value of the tuple being deleted is referenced from other tuples in the database Can be remedied by several actions: RESTRICT, CASCADE, SET NULL (see Chapter 8 for more details) RESTRICT option: reject the deletion CASCADE option: remove all referencing tuples SET NULL option: set the foreign keys of the referencing tuples to NULL ◦ One of the above options must be specified during database design for each foreign key constraint Exercise-4: possible violation when updating UPDATE may violate domain constraint and NOT NULL constraint on an attribute being modified Any of the other constraints may also be violated, depending on the attribute being updated: ◦ Updating the primary key (PK): Similar to a DELETE followed by an INSERT Need to specify similar options to DELETE ◦ Updating a foreign key (FK): May violate referential integrity ◦ Updating an ordinary attribute (neither PK nor FK): Can only violate domain constraints