Download presentation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
TESIS
on CORONAS-PHOTON
S. V. Kuzin (XRAS) and TESIS Team
TESIS:
scientific tasks
www.tesis.lebedev.ru
Scientific tasks:
 Investigation of the most dynamic processes
in the solar atmosphere, such as flares, coronal
mass ejections, dimmings etc.
Investigation of processes in far solar corona
(up to 4 solar radii) in EUV
 Study of evolution of large-scale long-life
coronal structures: active regions, coronal
loops, giant arcades, coronal holes and others.
Determination of the physical parameters
(electron temperature and density, differential
emission measure) of plasma of coronal
structures.
TESIS:
targets of observations
www.tesis.lebedev.ru
Targets of observations:
 Solar flares – their dynamics, energy
balance and physical characteristics
 Eruptive processes in the solar atmosphere –
triggers and methods of forecasting
 Coronal mass ejections – their formation and
dynamics
 Spectroscopy of coronal plasma in wide
temperature range
 Investigation of upper Earth atmosphere
TESIS INSTRUMENT
OVERVIEW
www.tesis.lebedev.ru
Channel
Aims
Description
Wavelength
band
Field of
view
Angular
resolution
MgXII Imaging
Spectroheliometer
(MISH)
10 MK plasma:
dynamics, parameters
Soft X-ray full-disk
Bragg
spectroheliometer with
spherical bent crystal
mirror
MgXII 8.418 A
and 8.423 A
doublet
1°.15
(Full solar disk)
2 arc sec / pixel
EUV Spectroheliometer
(EUSH)
From “cold” to “hot”
plasma: parameters
by means of imaging
spectroscopy
EUV full-disk
spectroheliometer with
grazing incidence
diffraction grating and
focusing multilayer
parabolic mirror
280-330 A
1°.24 (Full solar
disk compressed
along dispersion)
4.4 arc sec
(perpendicular to
dispersion)
1.5 arc min
(along dispersion)
Full-disk EUV
Telescopes
(FET)
High resolution and
high cadence images
of 0.05 MK and 15 MK
plasma
Herschelian
telescopes with
multilayer parabolic
mirrors
130-136 A
(telescope I)
290-320 A
(telescope II)
1°.0
(Full solar disk)
1.7 arc sec / pixel
Solar EUV
Coronograph
(SEC)
CME structure and
dynamics up to 4 solar
radii
Coronograph based
on the RitcheyChretien scheme
290-320 A
2°.5 (inner and
outer corona
from 0.7 to 4
solar radii)
5 arc sec / pixel
METHODS OF TESIS
OBSERVATIONS
www.tesis.lebedev.ru
 Multi-wavelength simultaneous observations of full Sun in 4 spectral channels
MgXII
8.42 A
FeXX
132 A
TESIS will provide simultaneous
imaging of the Sun in 4 spectral
channels, including EUV channel
295-315 A, which allows to derive
the density and the temperature
composition of the plasma.
HeII
304 A
EUV
295-315 A
MgXII IMAGING
SPECTROHELIOMETER
overview
www.tesis.lebedev.ru
 Bragg angle………………………………… 82°.08
 Wavelength band…….......………. MgXII 8.418 A
and 8.423 A doublet
 Focal length……………………………. 1378 mm
 Mirror Aperture………………………71× 103 mm
 Field of view ……..………………………….. 1°.15
 Angular resolution……………….……. 2 arc sec
 Cadence…….………….. up to 1 s (partial frame)
10 sec (full frame)
 Image detector….…………..… backside CCD of
2048 × 2048 pixels
CCD pixel size ……………………. 13.5 μ × 13.5 μ
MgXII IMAGING
SPECTROHELIOMETER
CCD detector
www.tesis.lebedev.ru
•Back-side
•2048x2048 pixel
•13.5x13.5 mkm
•14 bit ADC
•Noise - 6e/sec
(0C)
MgXII IMAGING
SPECTROHELIOMETER
temperature response
www.tesis.lebedev.ru
FULL-DISK
EUV TELESCOPES
overview
www.tesis.lebedev.ru
 Wavelength band….…...130 – 136 A (telescope I)
290 – 320 A (telescope II)
 Focal length………………………………. 1600 mm
 Mirror Aperture…………………. 100 mm diameter
 Field of view ……..……………………………... 1°.0
 Angular resolution…………………..…. 1.7 arc sec
 Cadence…….…………………1 sec (partial frame)
60 sec (full frame)
 Image detector….…………….… backside CCD of
2048 × 2048 pixels
CCD pixel size ………………..……. 13.5 μ × 13.5 μ
FULL-DISK
EUV TELESCOPES
overview
www.tesis.lebedev.ru
 Wavelength band….…...130 – 136 A (telescope I)
290 – 320 A (telescope II)
 Focal length………………………………. 1600 mm
 Mirror Aperture…………………. 100 mm diameter
 Field of view ……..……………………………... 1°.0
 Angular resolution…………………..…. 1.7 arc sec
 Cadence…….…………………1 sec (partial frame)
60 sec (full frame)
 Image detector….…………….… backside CCD of
2048 × 2048 pixels
CCD pixel size ………………..……. 13.5 μ × 13.5 μ
FULL-DISK
EUV TELESCOPES
temperature response
www.tesis.lebedev.ru
Fe XX (132 A)
 Tmin = 5 × 10 6 K
 Tmax = 1.2 × 10 7 K
MgXII channel
 Tmin ………… about 4 × 10 6 K
 Tmax ……………….…….. 10 7 K
EUV
SPECTROHELIOMETER
overview
www.tesis.lebedev.ru
 Wavelength band…….......……….…. 280 – 330 A
 Ions…..……HeII, SiIX, SiXI, FeXIV-FeXVI, MgVIII,
NiXVIII, CaXVII, AlIX, FeXXII and others
 Focal length………………………………. 600 mm
 Entrance Aperture………………………5× 80 mm
 Field of view ……..………………………….. 1°.24
(Full solar disk compressed along dispersion)
 Angular resolution………………..…. 4.4 arc sec
 Cadence…….……………………….. 30 – 600 sec
 Image detector….…………..… backside CCD of
1024 × 2048 pixels
CCD pixel size ……………………. 13.5 μ × 13.5 μ
EUV
SPECTROHELIOMETER
targets of observations
 Spectral diagnostic of solar active regions
www.tesis.lebedev.ru
SOLAR EUV
CORONOGRAPH
www.tesis.lebedev.ru
 Wavelength band……………….………290 – 320 A
 Focal length……………………………..…. 600 mm
 Mirror aperture…ring of 25 and 85 mm diameters
 Field of view ……..……………………………... 2°.5
(inner and outer corona from 0.7 to 4 solar radii)
 Angular resolution…………………….…. 5 arc sec
 Temporal resolution…………………..…… 600 sec
 Image detector….…………….… backside CCD of
2048 × 2048 pixels
CCD pixel size ………………..……. 13.5 μ × 13.5 μ
SOLAR EUV
CORONOGRAPH
www.tesis.lebedev.ru
TESIS DAILY DATA
www.tesis.lebedev.ru
TESIS
daily
telemetry
TESIS may provide
250
full FITS files
(2048×2048)
~0,5 Gb
1000
Binned FITS files
(1024×1024)
~1 hour of movies
(10 frames in sec)
30 000
JPEG images
(512×512 )
TESIS
INSTRUMENT

•
•
•
•
•
www.tesis.lebedev.ru
TESIS
6 independent channels (including SPHINX)
2 star trackers
500 MB information per day
Full Sun and corona up to 4 solar radii
Spatial resolution up to 1.7
 OPTICS:
• large aperture ML normal incidence mirror – new types of
high reflective coating
• Quartz large aperture high quality mirror
• ML filters

•
•
•
DETECTORS
2048x2048 pixel back-side CCD
14 bit ADC
Coated with ML filters
TESIS
INSTRUMENT
www.tesis.lebedev.ru
 CONSTRUCTION
• 16 step microdrivers (doors, shutters, pointing and focusing
mechanism etc)
• Thermo stabilized construction based on thermal pipes
• Active/passive cooling of CCD

•
•
•
•
•
•
•
ELECTRONICS
6.4x107 operation per second
256MB mass memory
Whole instrument control
4 channels readout independently
Onboard software updating
Onboard processing (including star trackers)
Onboard data compression
www.tesis.lebedev.ru
THANK
FOR YOUR ATTENTION
Related documents