Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490 [email protected] L6 - Stellar Evolution II: August-September, 2004 1 L 6: Circumstellar Disks Recent reviews include: Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks 5 Articles on Outflows Zuckerman, ARAA 2001, 39: 549 Zuckerman & Song (?), ARAA 2004, in press [email protected] L6 - Stellar Evolution II: August-September, 2004 2 L 6: Circumstellar Disks and Outflows [email protected] L6 - Stellar Evolution II: August-September, 2004 3 Flattened structures - Disks Inevitable consequence of star formation Rotation [email protected] Magnetic Fields L6 - Stellar Evolution II: August-September, 2004 4 Flattened structures - Disks Inevitable consequence of star formation Rotation P.S. Laplace 1796, 1799 I. Kant 1755 Exposition du systeme du monde Mechanique celeste Allgemeine Naturgeschichte und Theorie des Himmels Planetary System Formation ...another lecture – another time... [email protected] L6 - Stellar Evolution II: August-September, 2004 5 Mass Loss - Outflows Inevitable consequence of star formation Angular Momentum Loss - Redistribution The race between mass accretion & mass loss processses [email protected] L6 - Stellar Evolution II: August-September, 2004 6 Lynden-Bell & Pringle 1974, MNRAS 168, 603: Keplerian Disk Differential Rotation + Viscosity Mass Transport Inwards Angular Momentum Transport Outwards See also Gösta Gahm’s lecture [email protected] L6 - Stellar Evolution II: August-September, 2004 7 `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick a-disk blackbody radiation and thin disk approximation 2 H cs 1. c 2. H 3. cs 2 thi n disk definition vertical hydrostati c equilibriu m GM / R 3 P veloci ty of sound ( 1) kTc 4 4 4. Pc T m H 3c 4 4σTc 3GMM 5. 3 8 R 3 equation of state 1 2 R 1 R 6. energy tra nsport opacity relation 7 p q e.g., T : Kramer opacity for p 1, q 0 2 1 2 1 R R 8. a cs H M 7. 3 When / Where valid ? mass and angular momentum conservati on viscosity prescripti on Shakura & Sunyaev : a 1, turb v turblturb [email protected] L6 - Stellar Evolution II: August-September, 2004 8 Example: Lin & Papaloizou opacities (1985 PP II) Icy grains HMolecules bound-free free-free (Cox-Stuart-Alexander) [email protected] L6 - Stellar Evolution II: August-September, 2004 9 Grain Opacities Beckwith et al. 2000, PP IV [email protected] L6 - Stellar Evolution II: August-September, 2004 10 `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick a-disk Solve for the 8 unknowns ρ, Σ, H, cs , P, Tc , , as functions of M, M , R and any parameter R , Rin , Rout , a ... The radial drift velo city ist then found from 3 R v rad 1 2R R and the spectrum 1 2 1 M 2 R 4 h cos i 3 out R dR F 2 2 c D exp( h / kT ) 1 Rin R has the form 3 h / kT e [email protected] 1 3 2T L6 - Stellar Evolution II: August-September, 2004 11 40 observed SEDs of T Tauri Stars & `mean model´ of star+disk HABE Disk Structure: Dullemond & Dominik 2004 includes vertical Temperature distribution D´Alessio et al. 1999 [email protected] L6 - Stellar Evolution II: August-September, 2004 12 Gas Disks – Structure Models Steady Disks around Single Stars Boundary Conditions Rin : boundary layer, magnetosphere? Rout: ? , interstellar turbulence? Viscosity MHD/rotation Opacity (, T, …, XYZ, ..., z0, ..., c ...) Models Adams & Shu 1986 (flat) Kenyon & Hartmann 1987 (flared) Malbet & Bertout 1991 (vertical structure) D´Allessio et al. 1998,... 2003 Aikawa & Herbst 1998 (chemistry) Nomura 2002 (2D) Wolf 2003 (3D) [examples] [email protected] (Hawley & Balbus 1995) L6 - Stellar Evolution II: August-September, 2004 13 Observations of Keplerian Disks JE Keeler 1895 ApJ 1: 416 The Rings of Saturn spectrum image Courtesy Brandeker, Liseau & Ilyn 2002 [email protected] L6 - Stellar Evolution II: August-September, 2004 14 2 Categories of Disks T Tauri Disks: around young stars (0.1 - 10 Myr) of half a solar mass (0.1 - 1 Msun) at 150 pc distance (50 - 450 pc) in and/or near molecular clouds gas rich Accretion Disks Debris Disks: around young ms-stars (10 - 400 Myr) of about a solar mass (1 - 2 Msun) at 20 pc distance (3 - 70 pc) in the general field gas poor Vega-excess stellar disks [email protected] L6 - Stellar Evolution II: August-September, 2004 15 Frequency of Disks High Rate of occurence around young stars NGC 2024 Trapezium cluster IC 348 86% 80% 65% Haisch et al. 2001 65% Muench et al. 2001 and around BDs in Trapezium cluster see also G. Gahm’s lecture [email protected] L6 - Stellar Evolution II: August-September, 2004 16 Gas Disks - Sizes Fridlund et al. 2002 for One Object Size scale (AU) Tracer (mode)* Reference 20000 5000 - 10000 1400 <500 45 + 1600 200 7000 5000 4000 - 6000 1200 4000 5000 2500 CS (1- 0) (S) 13CO (1- 0) (S) C18O (1- 0) (I) 1.4 mm (I) mm, cm (I) 0.8 mm (I) H13CO+ (1- 0) (S) 0.7 - 1 mm (S) C18, 17O (2- 1) (S) 13CO (1- 0) (I) H13CO+ (1- 0) (I) H12, 13CO+ (1- 0) (S, I) C18O+ (1- 0) (I) Kaifu et al. 1984 Fridlund et al. 1989 Sargent et al. 1988 Woody et al. 1989 Keene & Masson 1990 Lay et al. 1994 Mizuno et al. 1994 Ladd et al. 1995 Fuller et al. 1995 Ohashi et al. 1996 Saito et al. 1996 Hogerheijde et al.1997, 98 Momose et al. 1998 *S=single dish, I=Interferometer [email protected] Size depends on frequency/mode of observation L6 - Stellar Evolution II: August-September, 2004 17 Gas Disks - Sizes generally T Tauri/HABE disks 50 - 100 AU Dust: mm-continuum interferometry 100 - 300 AU Dust: scattered stellar light 300 AU Gas: CO lines (evidence for Kepler rotation) Silhouettte disks (``proplyds´´) up to 1000 AU [email protected] Dust: scattered stellar light L6 - Stellar Evolution II: August-September, 2004 18 Gas Disks - Masses H2 Gas Directly [email protected] CO and Dust L6 - Stellar Evolution II: August-September, 2004 19 ? Why ? Gas Disks - Masses Lower limit: 0.001 to 1 MSun gas (based on mm / submm continuum) dust +dust How good are these numbers ? Do we understand disks ? Solar Minimum Mass Nebula = 0.002 MSun [email protected] L6 - Stellar Evolution II: August-September, 2004 20 Gas Disks - Make up gas disks consist of gas and dust what components? what proportions? [email protected] L6 - Stellar Evolution II: August-September, 2004 21 2 T Tauri Disks - Make up 13CO CO (200) (1)* HCO+ HCO+ (200) (5) HCN (200) HCN (5) *(N) = depletion factor LkCa 15 [email protected] TW Hya van Zadelhoff 2002 L6 - Stellar Evolution II: August-September, 2004 22 2 T Tauri Disks - Chemistry Molecular abundances (rel. H2) Species LkCa 15 TW Hya CO HCO+ H13CO+ DCO+ CN HCN H13CN HNC DCN CS H2CO CH3OH N 2H + H 2D + 3.4 ( - 7) 5.6 (-12) < 2.6(-12) …. 2.4 (-10) 3.1 (-11) …. …. …. 8.5 (-11) 4.1 (-11) < 3.7(-10) < 2.3(-11) < 1.5(-11) 5.7 ( - 8) 2.2 (-11) 3.6 (-13) 7.8 (-13) 1.2 (-10) 1.6 (-11) < 8.4(-13) < 2.6(-12) < 7.1(-14) …. < 7.1(-13) < 1.9(-11) < 1.8(-11) < 7.8(-12) Thi 2002 [email protected] L6 - Stellar Evolution II: August-September, 2004 23 Gas Disks - Evolution Time scales (viscous accretion disk) tdyn ~ a ttherm ~ a (H/R)2 tvisc tdyn ~ 1/WKepler a ~ 10-3 - 10-2 H/R << 1 if T ~ R-1/2 , tvisc ~ R tvisc ~ 105 yr (a/0.01)-1 (R/10 AU) [email protected] L6 - Stellar Evolution II: August-September, 2004 24 Gas Disks - Evolution Disk dispersal and disk lifetimes SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external star evap c = photoevaporation central star All for Trapezium conditions Physical Mechanisms Hollenbach et al. 2000 PPIV [email protected] L6 - Stellar Evolution II: August-September, 2004 25 Gas (T Tauri) Disks - Evolution Disk dispersal and disk lifetimes Average Error Bar Mass accretion evolution Calvet et al. 2000 PPIV [email protected] L6 - Stellar Evolution II: August-September, 2004 26 Gas Disks to Debris Disks – Evolution ? How ? fdust = DLIR/L vs stellar age See also lecture by G. Gahm (F)IR - excess Stellar luminosity (bolometric) [email protected] L6 - Stellar Evolution II: August-September, 2004 27 Gas Disks to Debris Disks – Evolution ? Clusters Individual stars (= 1 zodi) Spangler et al. 2001 [email protected] L6 - Stellar Evolution II: August-September, 2004 28 Debris Disks - Properties debris (collision products) or particulate (gas free) percentage of Main Sequence stars (15%?) (observationally) biased towards Spectral Type A for (detectable) ages <400 Myr Habing et al. 1999, 2001 disk sizes 100 to 2000 AU disk masses >1 to 100 MMoon (small grains) Pre-IRAS Solar system Zodi Vega [email protected] US Navy Chaplain G. Jones 1855 AJ 4, 94 Blackwell et al. 1983 L6 - Stellar Evolution II: August-September, 2004 29 http://www.hep.upenn.edu/~davidk/bpic.html [email protected] L6 - Stellar Evolution II: August-September, 2004 30 How much Gas in Dusty Debris Disks ? Disk evolution hypothesis: gas rich to gas poor Census of material (mgas/mdust): planet formation planet formation: enough gas for GPs ? planet formation: time scales ? planet formation: seeds of Life ? See review [email protected] L6 - Stellar Evolution II: August-September, 2004 31 L 6: conclusions • circumstellar disks are a consequence of star formation • disks and bipolar outflows/jets are connected • disks form potentially planetray systems L 6: open questions • what are the physics of disks and their outflows ? • how do disks evolve ? • what fraction forms planetary systems ? • when and how ? [email protected] L6 - Stellar Evolution II: August-September, 2004 32