* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download A105 Stars and Galaxies
Dialogue Concerning the Two Chief World Systems wikipedia , lookup
Perseus (constellation) wikipedia , lookup
Aquarius (constellation) wikipedia , lookup
Cygnus (constellation) wikipedia , lookup
Space Interferometry Mission wikipedia , lookup
Astrobiology wikipedia , lookup
Circumstellar habitable zone wikipedia , lookup
Corvus (constellation) wikipedia , lookup
Spitzer Space Telescope wikipedia , lookup
Directed panspermia wikipedia , lookup
Observational astronomy wikipedia , lookup
Search for extraterrestrial intelligence wikipedia , lookup
Planetary habitability wikipedia , lookup
Star formation wikipedia , lookup
International Ultraviolet Explorer wikipedia , lookup
Rare Earth hypothesis wikipedia , lookup
Stellar kinematics wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Extraterrestrial life wikipedia , lookup
A100 Life in the Universe Homework & Quiz 10 on Friday Reading on Oncourse – “Essay 3” Today’s APOD The Sun Today This week’s reading is available from the Resource Tool on Oncourse – Essay 3 Final Exam… Friday, 2:45 PM, here. 2 hours 100 multiple choice questions Comprehensive 50% on chapters 10, 11 & Essay 3 50% on material covered in the first three exams Review sheet on Oncourse Today’s Topics How likely it is that life exists elsewhere than Earth? (Drake Equation) Searching for life elsewhere Too hot! Too cold! The Habitable Zone •The planet needs to be the right distance from the star. WHY? •The star needs to have the right mass. WHY? A planet needs the right star! Constraints on star systems: 1) Old enough to allow time for evolution (rules out high-mass stars - 1%) 2) Need to have stable orbits (might rule out binary/multiple star systems - 50%) 3) Size of “habitable zone”: region in which a planet of the right size could have liquid water on its surface. Even so… billions of stars in the Milky Way seem at least to offer the possibility of habitable worlds. You are here There are 400 Billion Stars in our Galaxy. How many harbor life? How common is life of any kind in the Milky Way? Very Rare Rare Common Very Common How common is intelligent, technological life? Very Rare Rare Common Very Common The Drake Equation Start with 1011 stars in the Milky Way… What fraction are similar to the Sun? What fraction of sun-like type stars have planets? What fraction have planets in the HZ? On what fraction will life emerge? On what fraction will intelligence emerge? What fraction will develop technology? How long will a technological civilization survive? The Drake Equation What are the odds that there are intelligent, advanced, communicative civilizations out there? How many can we expect to exist in all of the Milky Way Galaxy? Make your own calculation of the number of intelligent, communicative, technologically advanced civilizations in the Milky Way. All stars in the Milky Way fraction with planets? fraction in the habitable zone? fraction with simple life? with technical society? with intelligence? with long-lasting technology? = NHP flife fciv fnow We do not know the values for the Drake Equation NHP : probably billions. flife : ??? Hard to say (near 0 or near 1) fciv : ??? It took 4 billion years on Earth fnow : ??? Can civilizations survive long-term? Search for Extra-Terrestrial Intelligence SETI experiments look for deliberate signals from E.T. Can We Find Extra-Terrestrial Intelligence? Looking for SIGNALS is the easiest way We can also transmit a signal (but it’s a long wait for the answer...) Different kinds of signals to listen for: local communication signals: on Earth, this includes TV, radio, etc. communication between the planet and another site, such as satellites and spacecraft A BEACON signal used to try to communicate with other civilizations. Searching for ET NASA funded SETI until 1993 Present efforts all privately funded SETI Institute (Frank Drake) seti@home -- help analyze SETI data Planetary Society META (million channel extraterrestrial assay) -scans one million channels in the band BETA (billion channel version of META) 84 ft. dish antenna at Harvard Univ. connected to supercomputers that look for nonrandom patterns in the signals (most of the signals come from natural sources such as stars) 250 megabytes of data each second Your computer can help! SETI @ Home: a screensaver with a purpose. Can Earth Be Heard from Space? YES! Earth has been broadcasting TV and radio communications for the last 50 years. ET civilizations up to 50 light years away could be picking us up. We can “listen” but radio wavelengths may be best Biggest collecting area - Arecibo telescope. The background sky is the quietest at wavelengths of about 0.1 mm. At shorter wavelengths, emission from the galaxy is loud, and at longer wavelengths, interstellar clouds absorb the signals Message to M13 Nov 1974 Message was beamed from the Arecibo radio telescope toward the M13 star cluster 24,000 light-years away 1679 (23 x 73) pulses and spaces The message was transmitted only once and was intended to serve as a exercise in how we might go about trying to contact extra-terrestrials. Message to M13 Formed a picture showing when arranged in a rectangle numbers 1-10 elements, chemicals of life a DNA molecule a stick figure of a human solar system diagram of radio telescope Visiting ET? With foreseeable technology, we can achieve speeds of 10% of the speed of light We can travel 10 light years in 100 years We can reach the nearest star in 43 years Allow each new colony 5000 years to duplicate the technology Colonies could spread out about 50 light years every 25,000 years How long to colonize? Assume 100,000 years per 20 parsec hop Total time to cover the Galaxy: 1500 hops x 100,000 years = 150,000,000 years The Fermi Paradox Emil Konopinski Enrico Fermi Edward Teller Herbert York Emil Konopinski LANL Tech Area LANL Fuller Lodge Cafeteria Enrico Fermi The Fermi Paradox The Drake Equation – A few hundred technical civilizations 150,000,000 million years to colonize the Galaxy WHERE IS EVERYBODY????? Where is Everyone? Some factors in Drake equation may be much smaller than we believe – is life, or intelligent life, very rare? Do civilizations hide to avoid a “galactic scourge?” Do technological civilizations selfdestruct? Is no one more advanced than we are? The Zoo hypothesis… Possible solutions to the paradox Civilizations are common but interstellar travel is not. Perhaps… Interstellar travel more difficult than we think Desire to explore is rare Civilizations destroy themselves before achieving interstellar travel These are all possibilities, but not very appealing… Possible solutions to the paradox We are alone: life/civilizations much rarer than we might have guessed. • Our own planet/civilization looks all the more precious… OR - There IS a galactic civilization… … and some day we’ll meet them… Difficulties of Interstellar Travel Far more efficient engines are needed Energy requirements are enormous Ordinary interstellar particles become like cosmic rays Social complications of time dilation Traveling to Another Star? Distances between stars are much greater than we can imagine Sci-fi books and movies have dramatized space travel to make it seem possible Interstellar travel may never happen Even the Voyager spacecraft (some of the fastest ever flown) traveled at only 20 km/s through space - not even 1% of the speed of light. They would take 60,000 years to reach even the nearest star 100.000000% Maximum Speed Achieved 10.000000% 0.100000% 0.010000% Space Shuttle 0.001000% Automobile 0.000100% Plane 0.000010% Train Horse 1000 100 10 1000 100 10 Years Before Present YEARS BEFORE 1 Now 0.000001% 0.1 0.01 0.001 10 100 1000 Years From Now YEARS AFTER % Speed of Light 1.000000% Can we travel to new worlds? Within the lifetime of today’s children we will be able to send robotic spacecraft to visit our nearest neighbors At 10% of the speed of light (30,000 km/sec) travel time will be about 100 years Then wait another 10-20 years for the data to return Dates to Remember Reading, homework, quiz next week HAND IN HOMEWORK HAND IN ACTIVIES