Download Lecture21

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Data and Applications Security
Developments and Directions
Dr. Bhavani Thuraisingham
The University of Texas at Dallas
Lecture #21
Privacy
March 29, 2005
Outline
 Data Mining and Privacy - Review
 Some Aspects of Privacy
 Revisiting Privacy Preserving Data Mining
 Platform for Privacy Preferences
 Challenges and Discussion
Some Privacy concerns
 Medical and Healthcare
- Employers, marketers, or others knowing of private medical
concerns
 Security
- Allowing access to individual’s travel and spending data
- Allowing access to web surfing behavior
 Marketing, Sales, and Finance
- Allowing access to individual’s purchases
Data Mining as a Threat to Privacy
 Data mining gives us “facts” that are not obvious to human analysts
of the data
 Can general trends across individuals be determined without
revealing information about individuals?
 Possible threats:
Combine collections of data and infer information that is private
 Disease information from prescription data
 Military Action from Pizza delivery to pentagon
 Need to protect the associations and correlations between the data
that are sensitive or private
-
Some Privacy Problems and Potential Solutions
 Problem: Privacy violations that result due to data mining
- Potential solution: Privacy-preserving data mining
 Problem: Privacy violations that result due to the Inference problem
- Inference is the process of deducing sensitive information from
the legitimate responses received to user queries
- Potential solution: Privacy Constraint Processing
 Problem: Privacy violations due to un-encrypted data
- Potential solution: Encryption at different levels
 Problem: Privacy violation due to poor system design
- Potential solution: Develop methodology for designing privacyenhanced systems
Some Directions:
Privacy Preserving Data Mining
 Prevent useful results from mining
- Introduce “cover stories” to give “false” results
- Only make a sample of data available so that an adversary is
unable to come up with useful rules and predictive functions
 Randomization
- Introduce random values into the data and/or results
- Challenge is to introduce random values without significantly
affecting the data mining results
- Give range of values for results instead of exact values
 Secure Multi-party Computation
- Each party knows its own inputs; encryption techniques used to
compute final results
Some Directions: Privacy Problem as a form of
Inference Problem
 Privacy constraints
- Content-based constraints; association-based constraints
 Privacy controller
- Augment a database system with a privacy controller for
constraint processing and examine the releasability of
data/information (e.g., release constraints)
 Use of conceptual structures to design applications with privacy in
mind (e.g., privacy preserving database and application design)
 The web makes the problem much more challenging than the
inference problem we examined in the 1990s!
 Is the General Privacy Problem Unsolvable?
Privacy Constraint Processing
 Privacy constraints processing
- Based on prior research in security constraint processing
- Simple Constraint: an attribute of a document is private
- Content-based constraint: If document contains information
about X, then it is private
- Association-based Constraint: Two or more documents taken
together is private; individually each document is public
- Release constraint: After X is released Y becomes private
 Augment a database system with a privacy controller for constraint
processing
Architecture for Privacy
Constraint Processing
User Interface Manager
Privacy
Constraints
Constraint
Manager
Query Processor:
Constraints during
query and release
operations
DBMS
Database Design
Tool
Update
Processor:
Constraints during
database design
operation
Constraints
during update
operation
Database
Semantic Model for Privacy Control
Dark lines/boxes contain
private information
Cancer
Influenza
Has disease
John’s
address
Patient John
address
England
Travels frequently
Some Directions:
Encryption for Privacy
 Encryption at various levels
- Encrypting the data as well as the results of data mining
- Encryption for multi-party computation
 Encryption for untrusted third party publishing
- Owner enforces privacy policies
- Publisher gives the user only those portions of the document
he/she is authorized to access
- Combination of digital signatures and Merkle hash to ensure
privacy
Some Directions:
Methodology for Designing Privacy Systems
 Jointly develop privacy policies with policy specialists
 Specification language for privacy policies
 Generate privacy constraints from the policy and check for
consistency of constraints
 Develop a privacy model
 Privacy architecture that identifies privacy critical components
 Design and develop privacy enforcement algorithms
 Verification and validation
Data Mining and Privacy: Friends or Foes?
 They are neither friends nor foes
 Need advances in both data mining and privacy
 Need to design flexible systems
- For some applications one may have to focus entirely on “pure”
data mining while for some others there may be a need for
“privacy-preserving” data mining
- Need flexible data mining techniques that can adapt to the
changing environments
 Technologists, legal specialists, social scientists, policy makers and
privacy advocates MUST work together
Aspects of Privacy
 Privacy Preserving Databases
- Privacy Constraint Processing
 Privacy Preserving Networks
- Sensor networks, - - -  Privacy Preserving Surveillance
- RFID
 Privacy Preserving Semantic Web
- XML, RDF, - - -  Privacy Preserving Data Mining
Revisiting Privacy Preserving Data Mining
 Association Rules
- Privacy Preserving Association Rule Mining
 IBM,
---- Decision Trees
- Privacy Preserving Decision Trees
 IBM, - - -  Clustering
- Privacy Preserving Clustering
 Purdue, - - -  Link Analysis
- Privacy Preserving Link Analysis
 UTD, - - - - -
Privacy Preserving Data Mining
Agrawal and Srikant (IBM)
 Value Distortion
- Introduce a value Xi + r instead of Xi where r is a
random value drawn from some distribution
 Uniform, Gaussian
 Quantifying privacy
Introduce a measure based on how closely the
original values of modified attribute can be
estimated
 Challenge is to develop appropriate models
Develop training set based on perturbed data
 Evolved from inference problem in statistical
databases
-
-
Platform for Privacy Preferences (P3P):
What is it?
 P3P is an emerging industry standard that enables
web sites t9o express their privacy practices in a
standard format
 The format of the policies can be automatically
retrieved and understood by user agents
 It is a product of W3C; World wide web consortium
www.w3c.org
 Main difference between privacy and security
User is informed of the privacy policies
User is not informed of the security policies
-
Platform for Privacy Preferences (P3P):
Key Points
 When a user enters a web site, the privacy policies
of the web site is conveyed to the user
 If the privacy policies are different from user
preferences, the user is notified
 User can then decide how to proceed
Platform for Privacy Preferences (P3P):
Organizations
 Several major corporations are working on P3P
standards including:
Microsoft
IBM
HP
NEC
Nokia
NCR
 Web sites have also implemented P3P
 Semantic web group has adopted P3P
-
Platform for Privacy Preferences (P3P):
Specifications
 Initial version of P3P used RDF to specify policies
 Recent version has migrated to XML
 P3P Policies use XML with namespaces for
encoding policies
 Example: Catalog shopping
Your name will not be given to a third party but
your purchases will be given to a third party
<POLICIES xmlns =
http://www.w3.org/2002/01/P3Pv1>
<POLICY name = - - - </POLICY>
</POLICIES>
-
Platform for Privacy Preferences (P3P):
Specifications (Concluded)
 P3P has its own statements a d data types
expressed in XML
 P3P schemas utilize XML schemas
 XML is a prerequisite to understanding P3P
 P3P specification released in January 20005 uses
catalog shopping example to explain concepts
 P3P is an International standard and is an ongoing
project
P3P and Legal Issues
 P3P does not replace laws
 P3P work together with the law
 What happens if the web sites do no honor their
P3P policies
Then appropriate legal actions will have to be
taken
 XML is the technology to specify P3P policies
 Policy experts will have to specify the policies
 Technologies will have to develop the
specifications
 Legal experts will have to take actions if the
policies are violated
-
Challenges and Discussion
 Technology alone is not sufficient for privacy
 We need technologists, Policy expert, Legal experts
and Social scientists to work on Privacy
 Some well known people have said ‘Forget about
privacy”
 Should we pursue working on Privacy?
- Interesting research problems
- Interdisciplinary research
- Something is better than nothing
- Try to prevent privacy violations
- If violations occur then prosecute
 Discussion?