Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Data Mining Query Languages Kristen LeFevre April 19, 2004 With Thanks to Zheng Huang and Lei Chen Outline Introduce the problem of querying data mining models Overview of three different solutions and their contributions Topic for Discussion: What would an ideal solution support? Problem Description You guys are armed with two powerful tools Database management systems Efficient and effective data mining algorithms and frameworks Generally, this work asks: “How can we merge the two?” “How can we integrate data mining more closely with traditional database systems, particularly querying?” Three Different Answers DMQL: A Data Mining Query Language for Relational Databases (Han et al, Simon Fraser University) Integrating Data Mining with SQL Databases: OLE DB for Data Mining (Netz et al, Microsoft) MSQL: A Query Language for Database Mining (Imielinski & Virmani, Rutgers University) Some Common Ground Create and manipulate data mining models through a SQL-based interface (“Commanddriven” data mining) Abstract away the data mining particulars Data mining should be performed on data in the database (should not need to export to a special-purpose environment) Approaches differ on what kinds of models should be created, and what operations we should be able to perform DMQL Commands specify the following: The set of data relevant to the data mining task (the training set) The kinds of knowledge to be discovered • • • • • Generalized relation Characteristic rules Discriminant rules Classification rules Association rules DMQL Commands Specify the following: Background knowledge • Concept hierarchies based on attribute relationships, etc. Various thresholds • Minimum support, confidence, etc. DMQL Specify background knowledge Specify rules to be discovered Relevant attributes or aggregations Collect the set of relevant data to mine Specify threshold parameters Syntax use database <database_name> {use hierarchy <hierarchy_name> for <attribute>} <rule_spec> related to <attr_or_agg_list> from <relation(s)> [where <conditions>] [order by <order list>] {with [<kinds of>] threshold = <threshold_value> [for <attribute(s)>]} DMQL Syntax <rule_spec> find classification rules [as <rule_name>] [according to <attributes>] Find association rules [as <rule_name>] generalize data [into <relation_name>] others DMQL use database Hospital find association rules as Heart_Health related to Salary, Age, Smoker, Heart_Disease from Patient_Financial f, Patient_Medical m where f.ID = m.ID and m.age >= 18 with support threshold = .05 with confidence threshold = .7 DMQL DMQL provides a display in command to view resulting rules, but no advanced way to query them Suggests that a GUI interface might aid in the presentation of these results in different forms (charts, graphs, etc.) MSQL Focus on Association Rules Seeks to provide a language both to selectively generate rules, and separately to query the rule base Expressive rule generation language, and techniques for optimizing some commands MSQL Get-Rules and Select-Rules Queries Get-Rules operator generates rules over elements of argument class C, which satisfy conditions described in the “where” clause [Project Body, Consequent, confidence, support] GetRules(C) [as R1] [into <rulebase_name>] [where <conds>] [sql-group-by clause] [using-clause] MSQL <conds> may contain a number of conditions, including: restrictions on the attributes in the body or consequent • “rule.body HAS {(Job = ‘Doctor’}” • “rule1.consequent IN rule2.body” • “rule.consequent IS {Age = *}” in, has, and is are rule subset, superset, and equality respectively pruning conditions (restrict by support, confidence, or size) Stratified or correlated subqueries MSQL GetRules(Patients) where Body has {Age = *} and Support > .05 and Confidence > .7 and not exists ( GetRules(Patients) Support > .05 and Confidence > .7 and R2.Body HAS R1.Body) Retrieve all rules with descriptors of the form “Age = x” in the body, except when there is a rule with equal or greater support and confidence with a rule containing a superset of the descriptors in the body MSQL correlated stratified GetRules(C) R1 where <pruning-conds> and not exists ( GetRules(C) R2 where <same pruning-conds> and R2.Body HAS R1.Body) GetRules(C) R1 where <pruning-conds> and consequent is {(X=*)} and consequent in (SelectRules(R2) where consequent is {(X=*)} MSQL Nested Get-Rules Queries and their optimization Stratified (non-corrolated) queries are evaluated “bottom-up.” The subquery is evaluated first, and replaced with its results in the outer query. Correlated queries are evaluated either topdown or bottom-up (like “loop-unfolding”), and there are rules for choosing between the two options MSQL GetRules(Patients) where Body has {Age = *} and Support > .05 and Confidence > .7 and not exists ( GetRules(Patients) Support > .05 and Confidence > .7 and R2.Body HAS R1.Body) MSQL Top-Down Evaluation GetRules(Patients) where Body has {Age = *} and Support > .05 and Confidence > .7 For each rule produced by the outer, evaluate the inner not exists ( GetRules(Patients) Support > .05 and Confidence > .7 and R2.Body HAS R1.Body) MSQL Bottom-Up Evaluation not exists ( GetRules(Patients) Support > .05 and Confidence > .7 and R2.Body HAS R1.Body) For each rule produced by the inner, evaluate the outer GetRules(Patients) where Body has {Age = *} and Support > .05 and Confidence > .7 MSQL Choosing between the two In general, evaluate the expression with more restrictive conditions first Heuristic rules Meant to prevent unconstrained queries from being evaluated first • Evaluate the query with higher support threshold first • Next consider confidence threshold • A (length = x) expression is in general more restrictive than (length > x), which is more restrictive than (length < x) • “Body IS (constant expression)” is more restrictive than “Body HAS”, which is more restrictive than “Body IN” • Next consider “Consequent IN” expressions • Descriptors of for (A = a) are more restrictive than wildcards such as (A = *) OLE DB for DM An extension to the OLE DB interface for Microsoft SQL Server Seeks to support the following ideas: None of the others seemed to support this Define a model by specifying the set of attributes to be predicted, the attributes used for the prediction, and the algorithm Populate the model using the training data Predict attributes for new data using the populated model Browse the mining model (not fully addressed because it varies a lot by model type) OLE DB for DM Defining a Mining Model Identify the set of data attributes to be predicted, the set of attributes to be used for prediction, and the algorithm to be used for building the model Populating the Model Pull the information into a single rowset using views, and train the model using the data and algorithm specified Supports complex objects, so rowset may be hierarchical (see paper for more complex examples) OLE DB for DM Using the mining model to predict Defines a new operator prediction join. A model may be used to make predictions on datasets by taking the prediction join of the mining model and the data set. OLE DB for DM CREATE MINING MODEL [Heart_Health Prediction] [ID] Int Key, [Age] Int, [Smoker] Int, [Salary] Double discretized, [HeartAttack] Int PREDICT, %Prediction column USING [Decision_Trees_101] Identifies the source columns for the training data, the column to be predicted, and the data mining algorithm. OLE DB for DM INSERT INTO [Heart_Health Prediction] ([ID], [Age], [Smoker], [Salary]) SELECT [ID], [Age], [Smoker], [Salary] FROM Patient_Medical M, Patient_Financial F WHERE M.ID = F.ID The INSERT represents using a tuple for training the model (not actually inserting it into the rowset). OLE DB for DM SELECT t.[ID], [Heart_Health Prediction].[HeartAttack] FROM [Heart_Health Prediction] PREDICTION JOIN ( SELECT [ID], [Age], [Smoker], [Salary] FROM Patient_Medical M, Patient_Financial F WHERE M.ID = F.ID) as t ON [Heart_Health Prediction].Age = t.Age AND [Heath_Health Prediction].Smoker = t.Smoker AND [Heart_Health Prediction].Salary = t.Salary Prediction join connects the model and an actual data table to make predictions Key Ideas Important to have an API for creating and manipulating data mining models The data is already in the DBMS, so it makes sense to do the data mining where the data is Applications already use SQL, so a SQL extension seems logical Key Ideas Need a method for defining data mining models, including algorithm specification, specification of various parameters, and training set specification (DMQL, MSQL, ODBDM) Need a method of querying the models (MSQL) Need a way of using the data mining model to interact with other data in the database, for purposes such as prediction (ODBDM) Discussion Topic: What Functionality would and Ideal Solution Support?