Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Reconstruction of regulatory modules based on heterogeneous data sources Karen Lemmens PhD Defence September 29th 2008 Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions 1. Introduction & objectives 2. Strategy – Data integration – Association rule mining algorithms 3. Main achievements – ReMoDiscovery: Unraveling the yeast transcriptional network – DISTILLER: Condition-dependent combinatorial regulation in E. coli 4. Conclusions and perspectives 29 September 2008 PhD defence Karen Lemmens DNA 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG GENE 1 GENE 2 DNA mRNA protein 29 September 2008 PhD defence Karen Lemmens DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG GENE 1 GENE 2 DNA GENE 1 GENE 2 mRNA protein 29 September 2008 PhD defence Karen Lemmens DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG GENE 1 GENE 2 DNA GENE 1 GENE 2 mRNA protein 29 September 2008 PhD defence Karen Lemmens DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG GENE 1 GENE 2 DNA GENE 1 GENE 2 TRANSCRIPTION mRNA protein 29 September 2008 PhD defence Karen Lemmens DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG GENE 1 GENE 2 DNA GENE 1 GENE 2 TRANSCRIPTION mRNA TRANSLATION protein 29 September 2008 PhD defence Karen Lemmens Condition-dependent transcription 1. Introduction DNA 2. Strategy 3. Achievements 4. Conclusions GENE 1 mRNA protein 29 September 2008 PhD defence Karen Lemmens Condition-dependent transcription 1. Introduction DNA 2. Strategy 3. Achievements 4. Conclusions GENE 1 mRNA protein 29 September 2008 PhD defence Karen Lemmens Condition-dependent transcription 1. Introduction DNA 2. Strategy 3. Achievements 4. Conclusions GENE 1 TRANSCRIPTION mRNA TRANSLATION protein 29 September 2008 PhD defence Karen Lemmens Condition-dependent transcription 1. Introduction DNA 2. Strategy 3. Achievements GENE 1 4. Conclusions GENE 1 TRANSCRIPTION mRNA TRANSLATION protein 29 September 2008 PhD defence Karen Lemmens Condition-dependent transcription 1. Introduction DNA 2. Strategy 3. Achievements GENE 1 4. Conclusions GENE 1 TRANSCRIPTION mRNA TRANSLATION protein 29 September 2008 PhD defence Karen Lemmens Condition-dependent transcription 1. Introduction DNA 2. Strategy 3. Achievements GENE 1 4. Conclusions GENE 1 TRANSCRIPTION mRNA TRANSLATION protein 29 September 2008 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions GENE 1 29 September 2008 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 29 September 2008 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 29 September 2008 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 29 September 2008 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 29 September 2008 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 29 September 2008 GENE 1 PhD defence Karen Lemmens Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 29 September 2008 GENE 1 PhD defence Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Transcriptional modules 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions 1. Introduction & objectives 2. Strategy – Data integration – Association rule mining algorithms 3. Main achievements – ReMoDiscovery: Unraveling the yeast transcriptional network – DISTILLER: Condition-dependent combinatorial regulation in E. coli 4. Conclusions and perspectives 29 September 2008 PhD defence Karen Lemmens Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions GENE 1 29 September 2008 PhD defence Karen Lemmens Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions ChIP-chip data GENE 1 29 September 2008 PhD defence Karen Lemmens Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions ChIP-chip data GENE 1 Regulatory motifs 29 September 2008 PhD defence Karen Lemmens Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions ChIP-chip data Microarray data GENE 1 Regulatory motifs 29 September 2008 PhD defence Karen Lemmens Network reconstruction 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Several methods for reconstruction of the transcriptional network exist Expression data Individual interactions Transcriptional modules Boolean ODE Bayesian Association (CLR, ARACNE) Clustering Biclustering Query-driven biclustering Method of Segal et al. LeMoNe Data integration Bayesian SEREND GRAM SAMBA COGRIM MA-Networker Inferelator Not all aspects of transcription taken into account by these methods ** Van den Bulcke T., Lemmens K., Van de Peer Y., Marchal K. (2006) Inferring Transcriptional Networks by Mining Omics Data. Current Bioinformatics, vol. 1, no. 3, pp. 301-313. ** Dhollander T., Sheng Q., Lemmens K., De Moor B., Marchal K., Moreau Y. (2007) Query-driven module discovery in microarray data. Bioinformatics, vol. 23, no. 19, pp. 2573-2580. 29 September 2008 PhD defence Karen Lemmens Association rule mining 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Association rule mining algorithms – Advantages: • • • • Enable exhaustive search Elegant and concurrent data integration No co-expression assumption between regulator and target Overlapping modules – Problems • Binary or discretized data • Filtering method necessary 29 September 2008 PhD defence Karen Lemmens Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions 1. Introduction & objectives 2. Strategy – Data integration – Association rule mining algorithms 3. Main achievements – ReMoDiscovery: Unraveling the yeast transcriptional network – DISTILLER: Condition-dependent combinatorial regulation in E. coli 4. Conclusions and perspectives 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 29 September 2008 2. Strategy 3. Achievements PhD defence 4. Conclusions Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Represent data in a mathematical way 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module – Genes are regulated by a minimum number of regulators – Genes share minimum number of common regulatory motifs – Genes are co-expressed 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module – Genes are regulated by a minimum number of regulators – Genes share minimum number of common regulatory motifs – Genes are co-expressed 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module – Genes are regulated by a minimum number of regulators – Genes share minimum number of common regulatory motifs – Genes are co-expressed 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module – Genes are regulated by a minimum number of regulators – Genes share minimum number of common regulatory motifs – Genes are co-expressed 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Regulatory program: Regulators: Motifs: MBP1 SWI4 SWI6 STB1 • Co-expressed genes: YDL003W YGR221C YNL300W YMR199W YKL113C 29 September 2008 YER001W YGR109C YGR189C YHR149C YER070W YPL256C YPL163C YPL267W YPR120C YMR199W YMR179W YML027W PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements • ReMoDiscovery outperforms module detection related 4. Conclusions methods for – GRAM – SAMBA • Conclusions – Meaningful biological results – Better performance than related methods association rule mining algorithms are well suited for identification of regulatory modules through data integration Lemmens K., Dhollander T., De Bie T., Monsieurs P., Engelen K., Smets B., Winderickx J., De Moor B., Marchal K. (2006) Inferring transcriptional module networks from ChIP-chip-, motif- and microarray data. Genome Biology, vol. 7, no. 5, pp. R37. 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Many aspects of transcription into account: – Regulatory motifs – Regulators – Co-expression of genes Condition dependency of the interactions is missing 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Many aspects of transcription into account: – Regulatory motifs – Regulators – Co-expression of genes Condition dependency of the interactions is missing 29 September 2008 PhD defence Karen Lemmens ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Many aspects of transcription into account: – Regulatory motifs – Regulators – Co-expression of genes Condition dependency of the interactions is missing 29 September 2008 PhD defence Karen Lemmens Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions 1. Introduction & objectives 2. Strategy – Data integration – Association rule mining algorithms 3. Main achievements – ReMoDiscovery: Unraveling the yeast transcriptional network – DISTILLER: Condition-dependent combinatorial regulation in E. coli 4. Conclusions and perspectives 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy • ReMoDiscovery: 3. Achievements 4. Conclusions • DISTILLER: – Co-expression in all conditions by correlation – Condition dependency: bandwidth concept – Apriori algorithm – CHARM algorithm – No filtering procedure – Filtering procedure to identify the most interesting modules 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Pastor D., Cortes-Calabuig A., Lemmens K., De Moor B., Marchal K., Denecker M. (2007) GeneReg: Integration of Experimental Data on the DNA Transcription Process. Proceedings of BNAIC 2007. 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Example: FNR module 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Example: FNR module 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Example: FNR module 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • FNR = one of the most extensively studied regulators • Experimental validation of novel FNR targets – High confidence: • • • • ydhY (b1674) yfgG (b2504) hscC (b0650) treF (b3519) Partridge et al, 2008 – Medium confidence: • • • • • • • 29 September 2008 yjhB (b4279) ydjX (b1750) yjtD (b4403) ydaT (b1358) yehD (b2111) yhjA (b3518) ftnB (b1902) Partridge et al, 2007 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Condition dependency – Arrays were grouped into conditional categories – Colors show to what extent the conditions of the modules of a particular regulator are enriched for a specific category 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Combinatorial regulation – Static – Highly combinatorial: • 42 regulons • 66 complex regulons • 70 complex regulons 29 September 2008 one regulator two regulators three or more regulators (maximum of 8) PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Combinatorial regulation at the module level • Lower combinatorial complexity • 25/150 modules at least two regulators (maximum of 3) • 24 modules involve at least one global regulator such as CRP, FNR or ArcA 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Combinatorial regulation at connector gene level One regulator may be sufficient to alter the expression of a connector gene upon a specific environmental cue 29 September 2008 PhD defence Karen Lemmens DISTILLER: Condition-dependent combinatorial regulation in E. coli 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Conclusions – Reliable predictions – Dynamic view on the network – Combinatorial regulation ** Lemmens K., De Bie T., Dhollander T., Monsieurs P., De Moor B., Collado-Vides J., Engelen K., Marchal K. (2008) The conditiondependent transcriptional network in Escherichia coli. Accepted for publication in Annals of NYAS, DREAM2. ** Lemmens K., De Bie T., Dhollander T., De Keersmaecker S., Thijs I., Schoofs G., De Weerdt A., De Moor B., Vanderleyden J., ColladoVides J., Engelen K., Marchal K. (2008) DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Submitted to Genome Biology. 29 September 2008 PhD defence Karen Lemmens Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions 1. Introduction & objectives 2. Strategy – Data integration – Association rule mining algorithms 3. Main achievements – ReMoDiscovery: Unraveling the yeast transcriptional network – DISTILLER: Condition-dependent combinatorial regulation in E. coli 4. Conclusions and perspectives 29 September 2008 PhD defence Karen Lemmens Conclusions 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Main contributions of this thesis: – Automated collection of data – ReMoDiscovery – DISTILLER • Goals obtained via: – Data integration – Association rule mining algorithms well suited for data integration and reconstruction of transcriptional network • Several algorithmic problems were solved • Novel biological findings 29 September 2008 PhD defence Karen Lemmens Perspectives 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Conceptual extensions: – Inclusion of other data sources • Additional motifs from de novo motif detection • Small RNAs – Comparison of networks • Implementation-related and algorithmic improvements: – – – – User-friendly interface Microarray compendium Filtering step Motif detection algorithms 29 September 2008 PhD defence Karen Lemmens Acknowledgements 1. Introduction 2. Strategy • CMPG - BioI 3. Achievements • CMPG – Prof. Dr. K. Marchal – BioI group • ESAT/SCD – BioI 4. Conclusions – Prof. Dr. J. Vanderleyden – Dr. S. De Keersmaecker • Computer Sciences – Prof. Dr. B. De Moor – Prof. Dr. Y. Moreau – BioI group – Prof. Dr. M. Denecker – A. Cortés Calabuig – Prof. Dr. T. De Bie – Prof. Dr. J. Collado-Vides 29 September 2008 PhD defence Karen Lemmens