Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Data Mining Tutorial D. A. Dickey April 2012 2013: International Year of Statistics Data Mining - What is it? • • • • Large datasets Fast methods Not significance testing Topics – Trees (recursive splitting) – Logistic Regression – Neural Networks – Association Analysis – Nearest Neighbor – Clustering – Etc. Trees • • • • • • • • A “divisive” method (splits) Start with “root node” – all in one group Get splitting rules Response often binary Result is a “tree” Example: Loan Defaults Example: Framingham Heart Study Example: Automobile fatalities Recursive Splitting Pr{default} =0.007 Pr{default} =0.012 Pr{default} =0.006 X1=Debt To Income Ratio Pr{default} =0.0001 Pr{default} =0.003 No default Default X2 = Age Some Actual Data • Framingham Heart Study • First Stage Coronary Heart Disease – P{CHD} = Function of: • Age - no drug yet! • Cholesterol • Systolic BP Import Example of a “tree” All 1615 patients Split # 1: Age Systolic BP “terminal node” How to make splits? • Which variable to use? • Where to split? – Cholesterol > ____ – Systolic BP > _____ • Goal: Pure “leaves” or “terminal nodes” • Ideal split: Everyone with BP>x has problems, nobody with BP<x has problems Where to Split? • First review Chi-square tests • Contingency tables Heart Disease No Yes Low BP High BP Heart Disease No Yes 95 5 100 75 25 55 45 100 75 25 DEPENDENT INDEPENDENT c2 Test Statistic • Expect 100(150/200)=75 in upper left if independent (etc. e.g. 100(50/200)=25) Heart Disease No Yes Low BP High BP (observed exp ected ) 2 c allcells exp ected 2 95 (75) 55 (75) 5 (25) 45 (25) 100 150 50 200 100 WHERE IS HIGH BP CUTOFF??? 2(400/75)+ 2(400/25) = 42.67 Compare to Tables – Significant! Measuring “Worth” of a Split • P-value is probability of Chi-square as great as that observed if independence is true. (Pr {c2>42.67} is 6.4E-11) • P-values all too small. • Logworth = -log10(p-value) = 10.19 • Best Chi-square max logworth. Logworth for Age Splits ? Age 47 maximizes logworth How to make splits? • Which variable to use? • Where to split? – Cholesterol > ____ – Systolic BP > _____ • Idea – We picked BP cutoff to minimize p-value for c2 • What does “significance” mean now? Multiple testing • 50 different BPs in data, 49 ways to split • Sunday football highlights always look good! • If he shoots enough times, even a 95% free throw shooter will miss. • Tried 49 splits, each has 5% chance of declaring significance even if there’s no relationship. Multiple testing a= Pr{ falsely reject hypothesis 2} a= Pr{ falsely reject hypothesis 1} Pr{ falsely reject one or the other} < 2a Desired: 0.05 probabilty or less Solution: use a = 0.05/2 Or – compare 2(p-value) to 0.05 Multiple testing • • • • • • 50 different BPs in data, m=49 ways to split Multiply p-value by 49 Bonferroni – original idea Kass – apply to data mining (trees) Stop splitting if minimum p-value is large. For m splits, logworth becomes -log10(m*p-value) ! ! ! Other Split Evaluations • Gini Diversity Index – { A A A A B A B B C B} – Pick 2, Pr{different} = 1-Pr{AA}-Pr{BB}-Pr{CC} • 1-[10+6+0]/45=29/45=0.64 LESS DIVERSE – {AABCBAABCC} • 1-[6+3+3]/45 = 33/45 = 0.73 MORE DIVERSE, LESS PURE • Shannon Entropy – Larger more diverse (less pure) – -Si pi log2(pi) {0.5, 0.4, 0.1} 1.36 {0.4, 0.3, 0.3} 1.74 (less diverse) (more diverse) Goals • Split if diversity in parent “node” > summed diversities in child nodes • Observations should be – Homogeneous (not diverse) within leaves – Different between leaves – Leaves should be diverse • Framingham tree used Gini for splits Validation • Traditional stats – small dataset, need all observations to estimate parameters of interest. • Data mining – loads of data, can afford “holdout sample” • Variation: n-fold cross validation – Randomly divide data into n sets – Estimate on n-1, validate on 1 – Repeat n times, using each set as holdout. Pruning • Grow bushy tree on the “fit data” • Classify holdout data • Likely farthest out branches do not improve, possibly hurt fit on holdout data • Prune non-helpful branches. • What is “helpful”? What is good discriminator criterion? Goals • Want diversity in parent “node” > summed diversities in child nodes • Goal is to reduce diversity within leaves • Goal is to maximize differences between leaves • Use validation average squared error, proportion correct decisions, etc. • Costs (profits) may enter the picture for splitting or pruning. Accounting for Costs • Pardon me (sir, ma’am) can you spare some change? • Say “sir” to male +$2.00 • Say “ma’am” to female +$5.00 • Say “sir” to female -$1.00 (balm for slapped face) • Say “ma’am” to male -$10.00 (nose splint) Including Probabilities Leaf has Pr(M)=.7, Pr(F)=.3. You say: Sir Ma’am True Gender M 0.7 (2) 0.7 (-10) 0.3 (5) F +$1.10 -$5.50 Expected profit is 2(0.7)-1(0.3) = $1.10 if I say “sir” Expected profit is -7+1.5 = -$5.50 (a loss) if I say “Ma’am” Weight leaf profits by leaf size (# obsns.) and sum Prune (and split) to maximize profits. Additional Ideas • Forests – Draw samples with replacement (bootstrap) and grow multiple trees. • Random Forests – Randomly sample the “features” (predictors) and build multiple trees. • Classify new point in each tree then average the probabilities, or take a plurality vote from the trees Lift 3.3 * Cumulative Lift Chart - Go from leaf of most to least predicted 1 response. - Lift is proportion responding in first p% overall population response rate Regression Trees • Continuous response Y • Predicted response Pi constant in regions i=1, …, 5 Predict 80 Predict 50 X2 Predict 130 Predict 100 X1 Predict 20 • Predict Pi in cell i. • Yij jth response in cell i. • Split to minimize Si Sj (Yij-Pi)2 Predict 80 Predict 50 Predict 130 Predict 100 Predict 20 • Predict Pi in cell i. • Yij jth response in cell i. • Split to minimize Si Sj (Yij-Pi)2 Real data example: Traffic accidents in Portugal* Y = injury induced “cost to society” Help - I ran Into a “tree” Help - I ran Into a “tree” * Tree developed by Guilhermina Torrao, (used with permission) NCSU Institute for Transportation Research & Education Cool < ------------------------ > Nerdy “Analytics” ------------------- “Statistics” “Predictive Modeling” ------------------ “Regression” Another major tool: Regression (OLS: ordinary least squares) If the Life Line is long and deep, then this represents a long life full of vitality and health. A short line, if strong and deep, also shows great vitality in your life and the ability to overcome health problems. However, if the line is short and shallow, then your life may have the tendency to be controlled by others http://www.ofesite.com/spirit/palm/lines/linelife.htm Wilson & Mather JAMA 229 (1974) X=life line length Y=age at death proc sgplot; scatter Y=age X=line; reg Y=age X=line; run ; Result: Predicted Age at Death = 79.24 – 1.367(lifeline) (Is this “real”??? Is this repeatable???) We Use LEAST SQUARES Squared residuals sum to 9609 Simulation: Age at Death = 67 + 0(life line) + e Error e has normal distribution mean 0 variance 200. Simulate 20 cases with n= 50 bodies each. NOTE: Regression equations : Age(rep:1) = 80.56253 - 1.345896*line. Age(rep:2) = 61.76292 + 0.745289*line. Age(rep:3) = 72.14366 - 0.546996*line. Age(rep:4) = 95.85143 - 3.087247*line. Age(rep:5) = 67.21784 - 0.144763*line. Age(rep:6) = 71.0178 - 0.332015*line. Age(rep:7) = 54.9211 + 1.541255*line. Age(rep:8) = 69.98573 - 0.472335*line. Age(rep:9) = 85.73131 - 1.240894*line. Age(rep:10) = 59.65101 + 0.548992*line. Age(rep:11) = 59.38712 + 0.995162*line. Age(rep:12) = 72.45697 - 0.649575*line. Age(rep:13) = 78.99126 - 0.866334*line. Age(rep:14) = 45.88373 + 2.283475*line. Age(rep:15) = 59.28049 + 0.790884*line. Age(rep:16) = 73.6395 - 0.814287*line. Age(rep:17) = 70.57868 - 0.799404*line. Age(rep:18) = 72.91134 - 0.821219*line. Age(rep:19) = 55.46755 + 1.238873*line. Age(rep:20) = 63.82712 + 0.776548*line. Predicted Age at Death = 79.24 – 1.367(lifeline) Would NOT be unusual if there is no true relationship . Distribution of t Under H0 Conclusion: Estimated slopes vary Standard deviation (estimated) of sample slopes = “Standard error” Compute t = (estimate – hypothesized)/standard error p-value is probability of larger |t| when hypothesis is correct (e.g. 0 slope) p-value is sum of two tail areas. Traditionally p<0.05 implies hypothesized value is wrong. p>0.05 is inconclusive. proc reg data=life; model age=line; run; Parameter Estimates Variable DF Intercept 1 Line 1 Parameter Estimate 79.23341 -1.36697 Standard Error 14.83229 1.59782 t Value Pr > |t| 5.34 <.0001 -0.86 0.3965 Area 0.19825 Area 0.19825 0.39650 -0.86 0.86 Conclusion: insufficient evidence against the hypothesis of no linear relationship. H0: H1: H0: Innocence H1: Guilt Beyond reasonable doubt P<0.05 H0: True slope is 0 (no association) H1: True slope is not 0 P=0.3965 Simulation: Age at Death = 67 + 0(life line) + e Error e has normal distribution mean 0 variance 200. WHY? Simulate 20 cases with n= 50 bodies each. Want estimate of variability around the true line. True variance is Use sums of squared residuals (SS). 2 Sum of squared residuals from the mean is “SS(total)” 9755 Sum of squared residuals around the line is “SS(error)” 9609 (1) SS(total)-SS(error) is SS(model) = 146 (2) Variance estimate is SS(error)/(degrees of freedom) = 200 (3) SS(model)/SS(total) is R2, i.e. proportion of variablity “explained” by the model. Analysis of Variance Source Model Error Corrected Total Root MSE 14.14854 DF 1 48 49 Sum of Squares 146.51753 9608.70247 9755.22000 R-Square 0.0150 Mean Square 146.51753 200.18130 F Value 0.73 Pr > F 0.3965 Those Mysterious “Degrees of Freedom” (DF) First Martian information about average height 0 information about variation. 2nd Martian gives first piece of information (DF) about error variance around mean. n Martians n-1 DF for error (variation) Martian Height 2 points no information on variation of errors n points n-2 error DF Martian Weight How Many Table Legs? (regress Y on X1, X2) Source Model Error Corrected Total error X2 Three legs will all touch the floor. DF 2 37 39 Sum of Squares 32660996 1683844 34344840 Mean Square 16330498 45509 X1 Fourth leg gives first chance to measure error (first error DF). Fit a plane n-3 (37) error DF (2 “model” DF, n-1=39 “total” DF) Regress Y on X1 X2 … X7 n-8 error DF (7 “model” DF, n-1 “total” DF) Extension: Multiple Regression Issues: (1) Testing joint importance versus individual significance Two engine plane can still fly if engine #1 fails Two engine plane can still fly if engine #2 fails Neither is critical individually Jointly critical (can’t omit both!!) (2) Prediction versus modeling individual effects (3) Collinearity (correlation among inputs) Example: Hypothetical company’s sales Y depend on TV advertising X1 and Radio Advertising X2. Y = b0 + b1X1 + b2X2 +e Data Sales; length sval $8; length cval $8; input store TV radio sales; (more code) cards; Sales 1 869 868 9089 2 836 820 8290 (more data) 40 969 961 10130 Radio TV proc g3d data=sales; scatter radio*TV=sales/shape=sval color=cval zmin=8000; run; Conclusion: Can predict well with just TV, just radio, or both! SAS code: proc reg data=next; model sales = TV radio; Analysis of Variance Source Model Error Corrected Total Root MSE Sum of Squares 32660996 1683844 34344840 DF 2 37 39 213.32908 Mean Square 16330498 45509 R-Square F Value 358.84 Pr > F <.0001 (Can’t omit both) 0.9510 Explaining 95% of variation in sales Parameter Estimates Variable Intercept TV radio DF 1 1 1 Parameter Estimate 531.11390 5.00435 4.66752 Standard Error 359.90429 5.01845 4.94312 t Value 1.48 1.00 0.94 Pr > |t| 0.1485 0.3251 (can omit TV) 0.3512 (can omit radio) Estimated Sales = 531 + 5.0 TV + 4.7 radio with error variance 45509 (standard deviation 213). TV approximately equal to radio so, approximately Estimated Sales = 531 + 9.7 TV or Estimated Sales = 531 + 9.7 radio Summary: Good predictions given by Sales = 531 + 5.0 x TV + 4.7 x Radio or Sales = 479 + 9.7 x TV or Sales = 612 + 9.6 x Radio or (lots of others) Why the confusion? The evil Multicollinearity!! (correlated X’s) Multicollinearity can be diagnosed by looking at principal components (axes of variation) Variance along PC axes “eigenvalues” of correlation matrix Direction axes point “eigenvectors” of correlation matrix Principal Component Axis 1 Proc Corr; Var TV radio sales; Pearson Correlation Coefficients, N = 40 Prob > |r| under H0: Rho=0 TV radio sales TV 1.00000 0.99737 <.0001 0.97457 <.0001 radio 0.99737 <.0001 1.00000 0.97450 <.0001 sales 0.97457 <.0001 0.97450 <.0001 1.00000 TV $ Principal Component Axis 2 Radio $ Grades vs. IQ and Study Time Data tests; input IQ Study_Time Grade; IQ_S = IQ*Study_Time; cards; 105 10 75 110 12 79 120 6 68 116 13 85 122 16 91 130 8 79 114 20 98 102 15 76 ; Proc reg data=tests; model Grade = IQ; Proc reg data=tests; model Grade = IQ Study_Time; Variable Intercept IQ Variable Intercept IQ Study_Time DF 1 1 Parameter Estimate 62.57113 0.16369 Standard Error 48.24164 0.41877 t Value 1.30 0.39 Pr > |t| 0.2423 0.7094 DF 1 1 1 Parameter Estimate 0.73655 0.47308 2.10344 Standard Error 16.26280 0.12998 0.26418 t Value 0.05 3.64 7.96 Pr > |t| 0.9656 0.0149 0.0005 Contrast: TV advertising looses significance when radio is added. IQ gains significance when study time is added. Model for Grades: Predicted Grade = 0.74 + 0.47 x IQ + 2.10 x Study Time Question: Does an extra hour of study really deliver 2.10 points for everyone regardless of IQ? Current model only allows this. proc reg; model Grade = IQ Study_Time IQ_S; Source Model Error Corrected Total Root MSE Variable Intercept IQ Study_Time IQ_S DF Sum of Squares Mean Square 3 4 7 610.81033 31.06467 641.87500 203.60344 7.76617 2.78678 R-Square F Value Pr > F 26.22 0.0043 0.9516 DF Parameter Estimate Standard Error t Value Pr > |t| 1 1 1 1 72.20608 -0.13117 -4.11107 0.05307 54.07278 0.45530 4.52430 0.03858 1.34 -0.29 -0.91 1.38 0.2527 0.7876 0.4149 0.2410 “Interaction” model: Predicted Grade = 72.21 0.13 x IQ 4.11 x Study Time + 0.053 x IQ x Study Time = (72.21 0.13 x IQ )+( 4.11 + 0.053 x IQ )x Study Time IQ = 102 predicts Grade = (72.21-13.26)+(5.41-4.11) x Study Time = 58.95+ 1.30 x Study Time IQ = 122 predicts Grade = (72.21-15.86)+(6.47-4.11) x Study Time = 56.35 + 2.36 x Study Time Slope = 2.36 Slope = 1.30 (1) (2) (3) (4) Adding interaction makes everything insignificant (individually) ! Do we need to omit insignificant terms until only significant ones remain? Has an acquitted defendant proved his innocence? Common sense trumps statistics! Logistic Regression • • • • “Trees” seem to be main tool. Logistic – another classifier Older – “tried & true” method Predict probability of response from input variables (“Features”) • Linear regression gives infinite range of predictions • 0 < probability < 1 so not linear regression. Example: Seat Fabric Ignition • Flame exposure time = X • Ignited Y=1, did not ignite Y=0 – Y=0, X= 3, 5, 9 10 , 13, 16 – Y=1, X = 7, 11, 12, 14, 15, 17, 25, 30 • Q=(1-p1)(1-p2)p3(1-p4)(1-p5)p6p7(1-p8)p9p10(1p11)p12p13p14 • p’s all different : pi=exp(a+bXi) /(1+exp(a+bXi)) • Find a,b to maximize Q(a,b) • Logistic idea: Map p in (0,1) to L in whole real line • Use L = ln(p/(1-p)) • Model L as linear in temperature, e.g. • Predicted L = a + b(temperature) • Given temperature X, compute L(x)=a+bX then p = eL/(1+eL) • p(i) = ea+bXi/(1+ea+bXi) • Write p(i) if response, 1-p(i) if not • Multiply all n of these together, find a,b to maximize Generate Q for array of (a,b) values DATA LIKELIHOOD; ARRAY Y(14) Y1-Y14; ARRAY X(14) X1-X14; DO I=1 TO 14; INPUT X(I) y(I) @@; END; DO A = -3 TO -2 BY .025; DO B = 0.2 TO 0.3 BY .0025; Q=1; DO i=1 TO 14; L=A+B*X(i); P=EXP(L)/(1+EXP(L)); IF Y(i)=1 THEN Q=Q*P; ELSE Q=Q*(1-P); END; IF Q<0.0006 THEN Q=0.0006; OUTPUT; END;END; CARDS; 3 0 5 0 7 1 9 0 10 0 11 1 12 1 13 0 14 1 15 1 16 0 17 1 25 1 30 1 ; Likelihood function (Q) -2.6 0.23 Concordant pair Discordant Pair IGNITION DATA The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Parameter Intercept TIME DF 1 1 Estimate -2.5879 0.2346 Standard Error 1.8469 0.1502 Wald Chi-Square 1.9633 2.4388 Pr > ChiSq 0.1612 0.1184 Association of Predicted Probabilities and Observed Responses Percent Concordant Percent Discordant Percent Tied Pairs 79.2 20.8 0.0 48 Somers' D Gamma Tau-a c 0.583 0.583 0.308 0.792 Example: Shuttle Missions • • • • • O-rings failed in Challenger disaster Low temperature Prior flights “erosion” and “blowby” in O-rings Feature: Temperature at liftoff Target: problem (1) - erosion or blowby vs. no problem (0) Example: Framingham • X=age • Y=1 if heart trouble, 0 otherwise Framingham The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Parameter DF Intercept age 1 1 Standard Wald Estimate Error Chi-Square -5.4639 0.0630 0.5563 0.0110 96.4711 32.6152 Pr>ChiSq <.0001 <.0001 Receiver Operating Characteristic Curve Cut point 1 Logitsof of1s 1s Logits Logitsof of0s 0s Logits red black red black ROC Curve Cut point 2 Logitsof of1s 1s Logits Logitsof of0s 0s Logits red black red black ROC Curve Cut point 3 Logitsof of1s 1s Logits Logitsof of0s 0s Logits red black red black ROC Curve Cut point 3.5 Logits of 1s red Logits of 0s black ROC Curve Cut point 4 Logits of 1s red Logits of 0s black ROC Curve Cut point 5 Logitsof of1s 1s Logits Logitsof of0s 0s Logits red black red black ROC Curve Cut point 6 Logits of 1s red Logits of 0s black Unsupervised Learning • We have the “features” (predictors) • We do NOT have the response even on a training data set (UNsupervised) • Clustering – Agglomerative • Start with each point separated – Divisive • Start with all points in one cluster then spilt – Direct • State # clusters beforehand EM CLUSTER NODE • Step 1 – find (k=50) “seeds” as separated as possible • Step 2 – cluster points to nearest seed (iterate – “k-means clustering”) • Step 3 – aggregate clusters using Ward’s method & determine appropriate number of clusters – new k • Step 4 – Use k means with this new k. Clusters as Created As Clustered – PROC FASTCLUS Cubic Clustering Criterion (to decide # of Clusters) • Divide random scatter of (X,Y) points into 4 quadrants • Pooled within cluster variation much less than overall variation • Large variance reduction • Big R-square despite no real clusters • CCC compares random scatter R-square to what you got to decide #clusters • 3 clusters for “macaroni” data. Classification Variables (dummy variables, indicator variables) Predicted Accidents = 1181 + 2579 X11 X11 is 1 in November, 0 elsewhere. Interpretation: In November, predict 1181+2579(1) = 3660. In any other month predict 1181 + 2579(0) = 1181. 1181 is average of other months. 2579 is added November effect (vs. average of others) Model for NC Crashes involving Deer: Proc reg data=deer; model deer = X11; Analysis of Variance Source Model Error Corrected Total Root MSE Variable Intercept X11 DF 1 58 59 580.42294 Label Intercept Sum of Squares 30473250 19539666 50012916 R-Square DF 1 1 Mean Square 30473250 336891 F Value 90.45 Pr > F <.0001 0.6093 Parameter Estimate 1181.09091 2578.50909 Standard Error 78.26421 271.11519 t Value 15.09 9.51 Pr > |t| <.0001 <.0001 Looks like December and October need dummies too! Proc reg data=deer; model deer = X10 X11 X12; Analysis of Variance Source DF Sum of Squares Mean Square Model Error Corrected Total 3 56 59 46152434 3860482 50012916 15384145 68937 Root MSE Variable Intercept X10 X11 X12 262.55890 DF 1 1 1 1 Parameter Estimate 929.40000 1391.20000 2830.20000 1377.40000 R-Square Standard Error 39.13997 123.77145 123.77145 123.77145 date F Value Pr > F 223.16 <.0001 0.9228 t Value 23.75 11.24 22.87 11.13 Pr > |t| <.0001 <.0001 <.0001 <.0001 Average of Jan through Sept. is 929 crashes per month. Add 1391 in October, 2830 in November, 1377 in December. JAN03 FEB03 MAR03 APR03 MAY03 JUN03 JUL03 AUG03 SEP03 OCT03 NOV03 DEC03 JAN04 FEB04 MAR04 APR04 MAY04 JUN04 JUL04 AUG04 SEP04 OCT04 NOV04 DEC04 x10 x11 x12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 What the heck – let’s do all but one (need “average of rest” so must leave out at least one) Proc reg data=deer; model deer = X1 X2 … X10 X11; Analysis of Variance Source Model Error Corrected Total Root MSE DF 11 48 59 182.07290 Sum of Squares 48421690 1591226 50012916 R-Square Mean Square 4401972 33151 F Value 132.79 Pr > F <.0001 0.9682 Parameter Estimates Variable Label Intercept X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Intercept DF Parameter Estimate Standard Error t Value Pr > |t| 1 1 1 1 1 1 1 1 1 1 1 1 2306.80000 -885.80000 -1181.40000 -1220.20000 -1486.80000 -1526.80000 -1433.00000 -1559.20000 -1646.20000 -1457.20000 13.80000 1452.80000 81.42548 115.15301 115.15301 115.15301 115.15301 115.15301 115.15301 115.15301 115.15301 115.15301 115.15301 115.15301 28.33 -7.69 -10.26 -10.60 -12.91 -13.26 -12.44 -13.54 -14.30 -12.65 0.12 12.62 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.9051 <.0001 Average of rest is just December mean 2307. Subtract 886 in January, add 1452 in November. October (X10) is not significantly different than December. positive negative Add date (days since Jan 1 1960 in SAS) to capture trend Proc reg data=deer; model deer = date X1 X2 … X10 X11; Analysis of Variance Source Model Error Corrected Total Root MSE DF 12 47 59 129.83992 Sum of Squares 49220571 792345 50012916 R-Square Mean Square 4101714 16858 F Value 243.30 Pr > F <.0001 0.9842 Parameter Estimates Variable Intercept X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 date Label Intercept DF 1 1 1 1 1 1 1 1 1 1 1 1 1 Parameter Estimate -1439.94000 -811.13686 -1113.66253 -1158.76265 -1432.28832 -1478.99057 -1392.11624 -1525.01849 -1618.94416 -1436.86982 27.42792 1459.50226 0.22341 Standard Error 547.36656 82.83115 82.70543 82.60154 82.49890 82.41114 82.33246 82.26796 82.21337 82.17106 82.14183 82.12374 0.03245 t Value -2.63 -9.79 -13.47 -14.03 -17.36 -17.95 -16.91 -18.54 -19.69 -17.49 0.33 17.77 6.88 Trend is 0.22 more accidents per day (1 per 5 days) and is significantly different from 0. Pr > |t| 0.0115 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.7399 <.0001 <.0001 Neural Networks • Very flexible functions • “Hidden Layers” • “Multilayer Perceptron” output inputs Logistic function of Logistic functions Of data Arrows represent linear combinations of “basis functions,” e.g. logistic curves (hyperbolic tangents) p1 p2 p3 b1 b2 Y b3 Example: Y = a + b1 p1 + b2 p2 + b3 p3 Y = 4 + p1+ 2 p2 - 4 p3 • Should always use holdout sample • Perturb coefficients to optimize fit (fit data) – Nonlinear search algorithms • Eliminate unnecessary complexity using holdout data. • Other basis sets – Radial Basis Functions – Just normal densities (bell shaped) with adjustable means and variances. Statistics to Data Mining Dictionary Statistics (nerdy) Data Mining (cool) Independent variables Dependent variable Estimation Clustering Features Target Training, Supervised Learning Unsupervised Learning Prediction Slopes, Betas Intercept Scoring Weights (Neural nets) Bias (Neural nets) Composition of Hyperbolic Tangent Functions Radial Basis Function and my personal Type I and Type II Errors Neural Network Normal Density favorite… Confusion Matrix Association Analysis • Market basket analysis – What they’re doing when they scan your “VIP” card at the grocery – People who buy diapers tend to also buy _________ (beer?) – Just a matter of accounting but with new terminology (of course ) – Examples from SAS Appl. DM Techniques, by Sue Walsh: Termnilogy • • • • • • Baskets: ABC ACD BCD ADE BCE Rule Support Confidence X=>Y Pr{X and Y} Pr{Y|X} A=>D 2/5 2/3 C=>A 2/5 2/4 B&C=>D 1/5 1/3 ABC ACD BCD ADE BCE Don’t be Fooled! • Lift = Confidence /Expected Confidence if Independent Checking Saving No (1500) Yes (8500) (10000) No 500 3500 4000 Yes 1000 5000 6000 SVG=>CHKG Expect 8500/10000 = 85% if independent Observed Confidence is 5000/6000 = 83% Lift = 83/85 < 1. Savings account holders actually LESS likely than others to have checking account !!! TEXT MINING Hypothetical collection of e-mails (“corpus”) from analytics students: John, message 1: There’s a good cook there. Susan, message 1: I have an analytics practicum then. Susan, message 2: I’ll be late from analytics. John, message 2: Shall we take the kids to a movie? John, message 3: Later we can eat what I cooked yesterday. (etc.) Compute word counts: analytics cook_n cook_v kids late movie practicum John 0 1 1 1 1 1 0 Susan 2 0 0 0 1 0 1 Text Mining Mini-Example: Word counts in 16 e-mails --------------------------------words----------------------------------------- s t u d e n t J o b P r a c t i c u m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 5 5 0 8 0 10 1 2 4 26 19 2 16 14 1 3 8 6 2 9 0 6 0 3 1 13 22 0 19 17 0 5 A n a l y t i c s M o v i e D a t a S A S K i d s 10 9 0 7 4 9 1 1 4 9 10 0 21 12 4 8 12 5 14 0 16 5 6 13 16 2 11 14 0 0 21 0 6 4 0 12 0 5 2 0 2 16 9 1 13 20 3 1 0 2 2 14 0 19 1 1 4 20 12 3 9 19 6 2 1 0 12 2 15 5 9 12 9 6 0 12 0 0 9 0 M i n e r G r o c e r y l i s t I n t e r v i e w 5 9 0 12 2 20 0 13 0 24 14 0 16 12 3 5 3 0 16 3 17 0 10 20 12 4 10 16 4 5 8 0 8 12 4 15 3 18 0 0 9 30 22 12 12 9 0 4 L a t e C o o k _ v C o o k _ n 18 12 24 22 9 13 2 0 3 9 3 17 0 6 3 6 5 1 18 0 18 8 6 12 0 7 2 14 0 3 9 1 0 0 4 0 9 1 0 1 0 2 0 3 0 0 3 0 Eigenvalues of the Correlation Matrix Eigenvalue Difference Proportion Cumulative 1 2 3 4 5 6 7 8 9 10 11 12 13 7.49896782 1.94396299 1.21865516 0.61469785 0.51315004 0.42261242 0.31689737 0.22009119 0.10020277 0.07804446 0.05870659 0.01199982 0.00201154 5.55500483 0.72530783 0.60395731 0.10154782 0.09053762 0.10571506 0.09680618 0.11988842 0.02215831 0.01933787 0.04670677 0.00998828 0.5768 0.1495 0.0937 0.0473 0.0395 0.0325 0.0244 0.0169 0.0077 0.0060 0.0045 0.0009 0.0002 Plotting 2 words only (analytics, family) P2 P1 0.5768 0.7264 0.8201 0.8674 0.9069 0.9394 0.9638 0.9807 0.9884 0.9944 0.9989 0.9998 1.0000 58% of the variation in these 12-dimensional vectors occurs in one Dimension (P1) Prin1 Job Practicum Analytics Movie Data SAS Kids Miner Grocerylist Interview Late Cook_v Cook_n 0.317700 0.318654 0.306205 -.283351 0.314980 0.279258 -.309731 0.290127 -.269651 0.261794 -.049560 -.267515 -.225621 My counts weights Prin1 Job Practicum Analytics Movie Data SAS Kids Miner Grocerylist Interview Late Cook_v Cook_n 0.317700 0.318654 0.306205 -.283351 0.314980 0.279258 -.309731 0.290127 -.269651 0.261794 -.049560 -.267515 -.225621 . . 3 0 0 0 1 0 0 0 0 1 0 0 0 My score On P1 3(.3177) +.31498 +.26179 _______ 1.530 My score 1.53 PROC CLUSTER (single linkage) on P1 scores of 16 documents (students) List of 16 Scored Documents Sorted by 1st P.C. Scores d o c u m e n t C L U S T E R P r i n 1 J o b P r a c t i c u m 5 3 12 8 15 7 9 1 16 2 6 4 11 14 10 13 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 -4.18243 -3.62271 -2.98274 -2.54416 -2.32671 -1.90553 -1.41349 0.15311 0.44444 0.93370 1.74995 2.08576 2.76166 3.37595 3.70319 3.77000 0 0 2 2 1 1 4 5 3 5 10 8 19 14 26 16 0 2 0 3 0 0 1 8 5 6 6 9 22 17 13 19 A n a l y t i c s M o v i e D a t a S A S K i d s 4 0 0 1 4 1 4 10 8 9 9 7 10 12 9 21 16 14 14 13 21 6 16 12 0 5 5 0 11 0 2 0 0 0 1 0 3 2 2 6 1 4 5 12 9 20 16 13 0 2 3 1 6 1 4 0 2 2 19 14 12 19 20 9 15 12 12 12 9 9 9 1 0 0 5 2 0 0 6 0 M i n e r G r o c e r y l i s t I n t e r v i e w 2 0 0 13 3 0 0 5 5 9 20 12 14 12 24 16 17 16 16 20 8 10 12 3 0 0 0 3 10 5 4 4 3 4 12 0 0 0 9 8 4 12 18 15 22 9 30 12 L a t e C o o k _ v C o o k _ n 9 24 17 0 3 2 3 18 6 12 13 22 3 6 9 0 18 18 14 12 9 6 0 5 1 1 8 0 2 3 7 0 9 4 3 1 3 0 0 0 0 0 1 0 0 0 2 0 Summary • Data mining – a set of fast, automated methods for large data sets • Some new ideas, many old or extensions of old • Some methods: – Trees (recursive splitting) – Logistic Regression – Neural Networks – Association Analysis – Nearest Neighbor – Clustering – Text Mining, etc. D.A.D.