Download 1_3_Maxwell

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Electricity and Magnetism
INEL 4151
Sandra Cruz-Pol, Ph. D.
ECE UPRM
Mayagüez, PR
Electricity => Magnetism

In 1820, Prof. Oersted discovered that a
steady current produces a magnetic field
while teaching a physics class.
http://micro.magnet.fsu.edu/electromag/java/faraday/index.html
Would magnetism would produce
electricity?
Eleven years later, and
at the same time,
 Mike Faraday in
London and
 Joe Henry in New
York
discovered that a timevarying magnetic field
produces an electric
current!
Vemf
d
 N
dt

L E  dl   t s B  dS
Electromagnetics was born!

This is the principle of
motors, hydro-electric
generators and
transformers operation.
This is what Oersted discovered
accidentally:
D 

L H  dl  s  J  t   dS
*Mention some examples of em waves
http://ece.uprm.edu/~pol/cursos
Some terms

E = electric field intensity [V/m]
 D = electric field density
 H = magnetic field intensity, [A/m]
 B = magnetic field density, [Teslas]
D  E
B  H
9
10
 o  8.85 10 12 F / m 
36
 o  4 10 7 H / m
Maxwell Equations
in General Form
Differential form Integral Form
  D  v
 D  dS   v dv
s
 B  0
v
 B  dS  0
s
B
 E  
t
D
 H  J 
t
Gauss’s Law for E
field.
Gauss’s Law for H
field. Nonexistence
of monopole

Faraday’s Law
L E  dl   t s B  dS
D 

H

dl

J


L
s  t   dS
Ampere’s Circuit
Law
Moving loop in static B field
When a conducting loop is moving inside a magnet (static B
field), there’s a force on the charges.
http://www.walter-fendt.de/ph14e/electricmotor.htm
http://micro.magnet.fsu.edu/electromag/java/generator/dc.html

 
F  Qu  B
 

F  Il B
Encarta®
Who was NikolaTesla?
 Find
out what inventions he made
 His relation to Thomas Edison
 Why is he not well know?
Vector Analysis Review:
 What
is a vector?
 How to add them, multiply, etc,?
 Coordinate systems

Cartesian, cylindrical, spherical
 Vector
Calculus review
Vector

A vector
has magnitude and direction.

A  â A A
where â A is unit vector.


Ax â x  Ay â y  Az â z
A A

â A   
Ax2  Ay2  Az2
A A

In Cartesian coordinates (x,y,z):

A  Ax â x  Ay â y  Az â z
Vector operations
Commutative
Associative
Distributive
   
AB  BA
   
A B  BA

  
 
A  (B  C)  (A  B)  C


 


k A  B  kA  kB
      
C A  B  CA  CB


 
kA  Ak


k (lA)  (kl)A
Example
Given vectors A=ax+3az and B=5ax+2ay-6az
 (a) |A+B|
 (b) 5A-B
 (c) the component of A along y
 (d) a unit vector parallel to 3A+B
Answers: (a) 7 (b) (0,-2,21) (c) 0 (d) ± (0.9117,.2279,0.3419)
Vector Multiplications

 
Dot product A  B  AB cos  AB
Note that:
 
A  B  Ax Bx  Ay By  Az Bz

Cross product
  2
A  A  A  A2
 
A  B  AB sin  ABaˆn
aˆ x
 
A  B  Ax
aˆ y
Ay
aˆ z
Az
Bx
By
Bz
Also…

Multiplying 3 vectors:
Scalar:
Vector:

  
  
  
A  (B  C)  B  (C  A)  C  (A  B)
  
     
A  (B  C)  B(A  C)  C(A  B)
Projection of vector A along B:


A B  A  âB
Coordinates Systems
 Cartesian
(x,y,z)
 Cylindrical (,f,z)
 Spherical (r,,f)
Cylindrical
coordinates

A  A â   Af â f  Az â z
 Ax  cos f
 A    sin f
 y 
 Az   0
 A   cos f
 A    sin f
 f 
 Az   0
 x y
2
x   cos f
2
f  tan
1
y   sin f
y
x
 sin f
cos f
0
sin f
cos f
0
0  A 
0  Af 
1  Az 
0  Ax 
0  Ay 
1  Az 
Spherical
coordinates

A  Ar â r  A â  Af â f
 Ax  sin  cos f
 A    sin  sin f
 y 
 Az   cos 
 Ar   sin  cos f
  
 A    cos  cos f
 Af    sin f
 
cos  cos f
cos  sin f
 sin 
sin  sin f
cos  sin f
cos f
2
2
x

y
2
2
2
1
1 y
r x y z
  tan
f  tan
z
x
x  r sin  cos f y  r sin  sin f z  r cos 
 sin f   Ar 
 
cos f   A 
0   Af 
cos    Ax 
 sin    Ay 
0   Az 
Vector calculus review
Del (gradient)



  aˆ x  aˆ y  aˆ z
x
y
z
Divergence
 Ax Ay Az
A 


x
y
z
Curl
aˆ x


A 
x
Ax
Laplacian
(del2 )
2
2
2

V

V

V
2
V 2  2  2
x
y
z
aˆ y

y
Ay
aˆ z

z
Az
Theorems

Divergence
 

A

d
S



A
dv


S

Stokes’

Laplacian
Scalar:
Vector:

 


 A  dl     A  dS
L

v
S
2
2
2

V

V

V
2
V 2  2  2
x
y
z

 2 A   2 Ax aˆ x   2 Ay aˆ y   2 Az aˆ z
Related documents