Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Electricity and Magnetism INEL 4151 Sandra Cruz-Pol, Ph. D. ECE UPRM Mayagüez, PR Electricity => Magnetism In 1820, Prof. Oersted discovered that a steady current produces a magnetic field while teaching a physics class. http://micro.magnet.fsu.edu/electromag/java/faraday/index.html Would magnetism would produce electricity? Eleven years later, and at the same time, Mike Faraday in London and Joe Henry in New York discovered that a timevarying magnetic field produces an electric current! Vemf d N dt L E dl t s B dS Electromagnetics was born! This is the principle of motors, hydro-electric generators and transformers operation. This is what Oersted discovered accidentally: D L H dl s J t dS *Mention some examples of em waves http://ece.uprm.edu/~pol/cursos Some terms E = electric field intensity [V/m] D = electric field density H = magnetic field intensity, [A/m] B = magnetic field density, [Teslas] D E B H 9 10 o 8.85 10 12 F / m 36 o 4 10 7 H / m Maxwell Equations in General Form Differential form Integral Form D v D dS v dv s B 0 v B dS 0 s B E t D H J t Gauss’s Law for E field. Gauss’s Law for H field. Nonexistence of monopole Faraday’s Law L E dl t s B dS D H dl J L s t dS Ampere’s Circuit Law Moving loop in static B field When a conducting loop is moving inside a magnet (static B field), there’s a force on the charges. http://www.walter-fendt.de/ph14e/electricmotor.htm http://micro.magnet.fsu.edu/electromag/java/generator/dc.html F Qu B F Il B Encarta® Who was NikolaTesla? Find out what inventions he made His relation to Thomas Edison Why is he not well know? Vector Analysis Review: What is a vector? How to add them, multiply, etc,? Coordinate systems Cartesian, cylindrical, spherical Vector Calculus review Vector A vector has magnitude and direction. A â A A where â A is unit vector. Ax â x Ay â y Az â z A A â A Ax2 Ay2 Az2 A A In Cartesian coordinates (x,y,z): A Ax â x Ay â y Az â z Vector operations Commutative Associative Distributive AB BA A B BA A (B C) (A B) C k A B kA kB C A B CA CB kA Ak k (lA) (kl)A Example Given vectors A=ax+3az and B=5ax+2ay-6az (a) |A+B| (b) 5A-B (c) the component of A along y (d) a unit vector parallel to 3A+B Answers: (a) 7 (b) (0,-2,21) (c) 0 (d) ± (0.9117,.2279,0.3419) Vector Multiplications Dot product A B AB cos AB Note that: A B Ax Bx Ay By Az Bz Cross product 2 A A A A2 A B AB sin ABaˆn aˆ x A B Ax aˆ y Ay aˆ z Az Bx By Bz Also… Multiplying 3 vectors: Scalar: Vector: A (B C) B (C A) C (A B) A (B C) B(A C) C(A B) Projection of vector A along B: A B A âB Coordinates Systems Cartesian (x,y,z) Cylindrical (,f,z) Spherical (r,,f) Cylindrical coordinates A A â Af â f Az â z Ax cos f A sin f y Az 0 A cos f A sin f f Az 0 x y 2 x cos f 2 f tan 1 y sin f y x sin f cos f 0 sin f cos f 0 0 A 0 Af 1 Az 0 Ax 0 Ay 1 Az Spherical coordinates A Ar â r A â Af â f Ax sin cos f A sin sin f y Az cos Ar sin cos f A cos cos f Af sin f cos cos f cos sin f sin sin sin f cos sin f cos f 2 2 x y 2 2 2 1 1 y r x y z tan f tan z x x r sin cos f y r sin sin f z r cos sin f Ar cos f A 0 Af cos Ax sin Ay 0 Az Vector calculus review Del (gradient) aˆ x aˆ y aˆ z x y z Divergence Ax Ay Az A x y z Curl aˆ x A x Ax Laplacian (del2 ) 2 2 2 V V V 2 V 2 2 2 x y z aˆ y y Ay aˆ z z Az Theorems Divergence A d S A dv S Stokes’ Laplacian Scalar: Vector: A dl A dS L v S 2 2 2 V V V 2 V 2 2 2 x y z 2 A 2 Ax aˆ x 2 Ay aˆ y 2 Az aˆ z