Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Surface Electronic Structure Surface periodicity and the two dimensional Bloch property An electron in the surface region moves in a potential field V(r) originating from its interaction with the positive nuclei and with the static charge density due to the other electrons (Hartree potential). In addition the other electrons tend to get out of the way of our electron lowering its energy (exchange and correlation term) This potential has a periodic modulation of the potential along coordinates x and y defining the surface plane, while the periodicity is lost along the vertical direction z V ( R, z ) V ( R RI , z ) z Asymptotically the potential behaves like the classical image potential, which for a metal surface (perfect screening) goes as: V ( z) 1 4 | z z0 | RI With z0 a reference plane measured with respect to the geometrical surface position x,y selvedge The potential goes smoothly from the flat region in the vacuum to the bulk potential determined by exchange and correlation and by the surface electric dipole. The difference between the internal potential and the Fermi energy EF, is the work necessary to extract an electron from the surface, the so called work function, The electronic wavefunctions have to satisfy the Schroedinger equation Following Bloch theorem the system goes into itself when it is displaced by one lattice vector RI the wavevector K is parallel to the surface and is defined only within a reciprocal lattice vector G given by GRI=2n, i.e. within the Brillouin zone., implying: Let’s consider a beam of electrons incident on the surface and scattered by it: The total wavefunction is given by The amplitudes AG contain information about the location of the atoms with respect to the surface mesh. If the beam impinges from the outside of the crystal we have the phenomenon of (low energy) electron diffraction (LEED) If it impinges from the inside it gives rise to the band structure Bulk States: one dimensional case : Inside the crystal the total wavefunction is given by the sum of the amplitudes of incoming and reflected waves, while outside it is described by an evanescent wave The coefficients r and t can be readily obtained by matching amplitude and derivative of the wavefunction in the two domains. While - and + are propagating waves, is a standing wave. 3D: analogous to 1D but more complicated situation since + consists of all diffracted waves and in addition evanescent waves are now possible also inside the crystal . Inside the crystal we have: The latter waves are evanescent. They are not allowed for an extended system, but may exist in presence of a surface since it prevents them to grow indefinitely For the total wavefunction we get inside the crystal: rGK ,G ; E G While the transmitted waves outside of the crystal for a step like barrier (see figure) are : tG e i ( K G )R ) G z e Matching amplitude and derivative at z=0 we obtain 2N equations for NrG and NtG The square of the wavefunction gives the density of states Interference is negative at the extremes of the 3D band at the surface leading to vanishing densities band narrowing. and to extra features in the gap: the surface states SS ------- bulk density _____ surface density surf | E E0 | SS Relation between 3D and 2D Brillouin zones Photoemission spectroscopy The energy of bulk states depends on photon energy, h, because they disperse with kz. The surface state has on the contrary an energy independent of kz. Evac EF h SS Band narrowing in the tight binding picture of atomic orbitals Tight binding scheme, α,I: localized atomic orbital α on atom I a , I , I a , J , J a , K , K ... The coefficients aα,I , aβ,J , … are complex number representing the contribution to the state of the atomic wavefunctions with orbitals α, β…localized on the atoms I, J, … They form a vector which satisfies the matrix form of the Schroedinger equation With Hi,j the matrix element between orbital i and j , corresponding to the hopping probability of an electron if ij (in Dirac’s notation <αI|H|βJ>) and the energy if i=j. The Schroedinger equation is still a differential equation which may be solved using the Green function method The shape of σ(E) can be described in terms of its moments with respect to E (series expansion) The integral can be calculated with the method of the residues (extension of the integral into the imaginary plane - contour integration or method of Cauchy) Im residue which can be rewritten inserting the expansion over the basis functions yielding: Re The width of a distribution is given by its second momentum bulk Van Hove singularities surface Experimental verification of band narrowing by photoemission Given λ(E), mean free path of the electrons (see figure) in a solid at the kinetic energy E (universal curve) ln λ 10nm 1nm d-band width 50 eV 500 eV ln E Photoemission spectroscopy Modification of the density of states at EF W(100) The increased density of states at EF implies a charge unbalance which generates an electric field which causes a rigid shift of the electronic structure of the surface atoms Surface core level shifts in photoemission Ta less than 5 d-electron 4f pulled down by 0.4 eV Ir more than 5 d-electrons 4f pushed up by 0.7 eV Surface Core level shift and chemical core level shifts Shockley Surface States for the free electron model Let’s assume a fairly weak pseudopotential V(z)=2Vgcos gzz 2 gz with g z and a periodicity in the z direction which opens a gap at k z a a 2 giving bulk solutions for the Schroedinger equation of the form: aeik z bei ( k z z gz ) z The eigenvalue equation H=E in matrix form contains off diagonal elements arising from the mixing of the two parts of the wavefunction: k z2 2 Vg a a Vg E 2 ( k z g z ) b b 2 or k z2 E 2 Vg written in atomic units for which ћ=me=e=1 and the energy is measured in Hartrees (1 H=2Rydberg ~27,2 eV, twice the ionization energy of the H atom) a 0 2 (k z g z ) E b 2 Vg The energy E is calculated from the determinant of the matrix which gives: k z2 E 2 Vg 2 (k z g z ) E 2 Vg kz (k z g z ) 2 ( E )( E ) Vg2 0 2 2 k z2 (k z g z ) 2 k z2 (k z g z ) 2 V ( )E E 2 0 2 2 2 2 2 g 2 2 2 2 2 2 1 k ( k g ) k ( k g ) k ( k g ) z z z E { z z ( z z ) 2 4( z z Vg2 )} 2 2 2 2 2 2 2 Since the gap is at the zone boundary we can put kz = gz /2 and obtain 2 g E z | Vg | 8 i.e. the band gap is of 2|Vg| and is at the average energy of gz2/8 In order to find the wavefunctions we have to substitute E± into the Schroedinger equation and look for propagating waves 2 g E z | Vg | 8 k z2 E 2 Vg a 0 2 (k z g z ) E b 2 Vg and multiply the rows of the matrix with the columns of the vector, obtaining: from upper row k z2 ( E ) a Vg b 0 2 2 ( k g ) z Vg a [ z E ]b 0 2 Vg 2 k E z a 2 yielding: 2 ( k g ) b E z z 2 Vg from lower row g z2 | Vg | At the zone boundary kz=gz/2 and remembering that E 8 Vg g2 2 g z | Vg | z a 8 ik z z i(kz g z ) z we obtain: 82 ae be 2 g g b z z | Vg | 8 8 Vg e gz i gz z 2 | Vg | Vg if Vg>0 it reads at z=a/2 e i gz z 2 wavefunction of the bulk states at the upper and lower border of the gap g z 2 cos z 2 g z g 2i sin z 2 g ‘p’-like wave, node at the position of the nuclei ‘s’-like wave, belly at the position of the nuclei normal gap: ‘s’ states are lower in energy than ‘p’ states However, if is Vg is negative the characters of the bulk wavefunctions at the upper and at the lower side of the gap are inverted: the ‘p’ like wave has now a lower energy than the ‘s’ like wave. This situation corresponds to an avoided crossing of the electron states and is called inverted Shockley gap, (present typically at the L point of the 3D BZ) The density of states which cannot be in the gap moves to the upper or to the lower branch E -2Vg kz=π/a kz Surface States Solutions corresponding to surface states have an imaginary wavevector since they decay towards the bulk kz=κ+i Substituting the new kz in the eigenvalue equation we get for the energy: which for κ=gz/2 becomes: E gz 2 i 2 2 g z2 2 g 2 z Vg 8 2 4 Since the energy is real by definition we must have Vg2>gz2 2/4 i.e. 2Vg/gz or Since at the borders of the gap =0, the imaginary part is largest close to the center of the gap. In general two solutions are expected for E± giving rise to two Shockley States Let’s analyse the wavefunction of the surface states. ae i ( i ) z be i ( i g z ) z which becomes at gz/2 Inserting E± and substituting kz with κ+i to find the a and b coefficients of the wavefunction. For κ=gz/2 it becomes: e z (e i gz z 2 k z2 E 2 Vg gz 2 ( i ) 2 E 2 Vg b i e a gz z 2 ) a Vg 0 2 (k z g z ) E b 2 a Vg 0 b gz 2 ( i ) 2 E 2 g z2 2 ig z ( E ) a Vg b 0 8 2 2 2 2 g Vg a ( z E ig z )b 0 8 2 2 We then obtain either: a b 2 i Vg g z2 2 ig z V 4 2 2 g g z2 2 ig z V a 4 2 b Vg 2 g or: Multiplying the two solutions we get g e z (e z E gz 2 2 g z2 2 g 2 z Vg 8 2 4 i gz z 2 e i gz z 2 a 2 | | 1 b i.e. a e 2 i b e 2i ) e z e i (e i gz z 2 is a phase factor ei e i gz z 2 2 this is the wavefunction of the Surface State inside the crystal e i ) For the total wavefunction we have to match amplitude and derivative (or the logaritmic derivative) of the wavefucntion inside with the wavefunction outside of the crystal at z=0: outside Vsb inside ' gz tan 2 matching is possible only for negative tan values, i.e for -½<<0 or ½<< Let’s analyse At the border of the gap =0 and (a/b) ±=±Vg/|Vg|; E- =gz2/8-|Vg| at the lower border and E+=gz2/8+|Vg| at the upper border if Vg<0 a/b=-1 at the lower border 2=π a/b=+1 at the upper border 2=2π at half gap | Vg | /a a b Vg g z2 2 ig z V 4 2 2 g Vg a Vg 1 a i 2i b ig z | Vg | i 2 2a if Vg>0 at the upper border a/b=1 =0 at the lower border a/b=-1 =π while at the center a/b=-Vg|(i|Vg|)=+i so that 2 2 or 2 wave matching is possible 0 2 0 2 no wave matching is possible Conclusion: For the existence of the Shockley Surface State Vg has to be negative, i.e. the potential has to be less attractive on the nuclei and the charge density accumulates outside of the outermost atomic plane. This condition is realized for gaps originating from the projection of the L point of the 3D fcc Brillouin zone which presents an inverted Shockley gap Surface charge density is largest outside of the outermost atomic plane Surface band structure of Au(111) spin resolved photoemission spectra Spin resolved photoemission spectra for Au(111) Scheme of the surface band structure of Au(111) M. Hoesch et al., Phys. Rev. B, 69, R241401 (2004) F. Reinert et al., Phys. Rev. B, 63, 115415 (2001) Au(788) quasi-one dimensional Surface States If the SS are above EF they are empty and may be observed by inverse photoemission Inverted Shockley gap at L S3 S1 is an Image State, S2 and S2 Shockley States Semiconduttori: ricostruzione superficiale • L’assenza di atomi limitrofi da un lato del cristallo altera le forze interatomiche nei piani più vicini alla superficie • Le condizioni di equilibrio per la superficie sono modificate rispetto al volume • Le posizioni atomiche e la struttura atomica di superficie possono essere differenti da quella attesa dalla terminazione del volume • Differenza tra metalli e semiconduttori: Metalli: Gas di elettroni fortemente delocalizzato Legami chimici essenzialmente non direzionali Semiconduttori: Legami tetraedrici (Si, Ge, GaAs, InP, InSb…) Legami fortemente direzionali La rottura dei legami modifica in modo considerevole la configurazione atomica di superficie Semiconduttori III-V: GaAs • Superficie di clivaggio: (110) • Il legame sp3 del Gallio si deibridizza per formare un legame di tipo quasi sp2 (planare). • Ricostruzione superficiale Ga As • Piccola variazione nella lunghezza dei legami • Inclinazione dei legami covalenti (27°) Vista tridimensionale laterale .. Silicio Si(111) •Un “dangling bond” per atomo di superficie •Ricostruzioni principali: (2x1), (7x7) •Sono possibili anche (5x5), (9x9)… Configurazione più stabile Transizioni di fase: (2x1) (7x7) a ~ 800 K irreversibile (7x7) (1x1) a ~ 1100 K reversibile Si(001) • 2 legami rotti per atomo di superficie • Ricostruisce (2x1), (2x2), c(4x2) Transizione di fase (2x1) c(4x2) a T ~ 200 K reversibile stabile a temperatura ambiente STM Fornisce un’immagine nello spazio reale della topologia di superficie su scala atomica. Permette lo studio della struttura elettronica di superficie fornendo informazioni sulla presenza di stati occupati o vuoti. Immagini STM del Si(111) 2x1 Shift tra gli stati vuoti e pieni “Buckling” Trasferimento di carica tra atomi della superficie Stati occupati Stati vuoti E’ necessario determinare un modello strutturale che spieghi la localizzazione spaziale degli stati di superficie. Modelli alternativi per spiegare la ricostruzione 2x1 La ricostruzione coinvolge gli atomi del 2° strato, rompendo alcuni legami e formandone di nuovi. Si forma una catena di legami a “zig-zag” Stati occupati Stati vuoti Shockley Surface states on Si(111) 2x1 one dimensional π bonded chains along (0-11) Γ-J Interband transitions induced by infrared photons (Attenuated total reflection) anisotropic signal - transitions possible only when electric field is along the π bonded chains Notice: gap 0.5 eV instead of 1.2 eV as for the bulk Stati elettronici di superficie: Il metodo della rifessione totale attenuata mostra una forte dipendenza nell’assorbimento nell’infrarosso, alla frequenza corrispondente alla transizione interbanda tra gli stati superficiali, dalla direzione cristallografica lungo la quale viene allineato il campo elettrico dei fotoni. Tale asimmetria corrisponde ad una asimmetria nella dispersione degli stati elettronici superficiali, predetta correttamente dal modello di Pandey ma non riprodotta da modelli in cui la sovrastruttura sia determinata solo dallo spostamento verticale degli atomi alla superficie. Spettroscopia locale: STS Misure di conducibilità (dI/dV) fatte con l’STM confermano la presenza di densità elettronica superficiale sia per stati pieni che per stati vuoti che riproduce quella calcolata per il modello di Pandey. Tale modello può pertanto dirsi pienamente confermato. Densità degli stati di superficie Densità degli stati di bulk Si(111) 7x7 Ricostruzione complessa Modello, composto da due layers ricostruiti + 12 adatomi, caratterizzato da: 12 adatomi che compensano alcuni dangling bonds dello strato sottostante 6 atomi con un dangling bond per atomo 9 dimeri sul bordo delle sottocelle triangolari vacanze profonde ad ogni apice della cella unitaria posizionamento errato (stacking fault) degli atomi nella sottocella di sinistra Immagini STM del Si(111) 7x7 Si possono notare le profonde vacanze agli apici della cella. Le due metà della cella unitaria non sono equivalenti. La differenza nella corrente di tunnelling non è attribuita ad una reale variazione in altezza degli atomi, ma è dovuta ad una differente densità degli stati. Immagini STM del Si(111) 7x7 Sequenze di immagini al variare della tensione Immagine topografica della superfici (+2V) Stato posto 0.35 eV al di sotto di EF Stato localizzato sui 12 adatomi. Si può notare l’asimetria della cella. La corrente è maggiore nella metà con l’impilamento sbagliato. A piccole tensioni positive si osservano immagini del tutto simili stati metallici di superficie Stato posto 0.8 eV al di sotto di EF Stato generato dai dangling bonds dei 6 atomi del secondo strato che non sono legati direttamente agli adatomi. Si osservano i dangling bonds sul fondo delle vacanze agli angoli della cella. Stato posto 1.8 eV al di sotto di EF Stato “back-bond” dovuto agli orbitali 3px e 3py degli adatomi legati agli orbitali 3pz degli atomi sottostanti Si(001) 2x1 Le immagini LEED mostrano una ricostruzione (2x1). Diversi modelli furono proposti: Si(100) non ricostruito Missing Row (scartato dai dati di fotoemissione) Dimeri simmetrici Dimeri asimmetrici Come si formano i dimeri? I due dangling bond sp3 per atomo di superficie si deibridizzano formando orbitali quasi spz, px, py. I primi danno luogo a legami , creando dimeri nella direzione [110] con stati doppiamente occupati. Gli altri formano stati parzialmente occupati nel piano della superficie di carattere px e py. Dimeri asimmetrici Comportamento non-metallico Dimeri simmetrici Comportamento metallico Sperimentalmente non si osservano stati di superficie in prossimità nel livello di Fermi. La superficie è quindi semiconduttrice, in accordo con il modello asimmetrico. Immagini STM del Si(001) 2x1 In questa struttura i dimeri danno origine a dipoli, a causa del trasferimento di carica tra gli atomi. L’interazione tra i dimeri di righe vicine è piccola e le strutture (2x2) e c(4x2) hanno circa la stessa energia. Bastano, quindi, deboli effetti termici per avere una transizione dalla fase (2x1) a queste due strutture. Si(111) 7x7 (n doped) quasi - elastic peak width in electron scattering (HREELS) due to the Shockley Surface States. Excitation of a low energy surface plasmon on the metallic surface. The pinned surface Fermi level causes a band bending and a surface depletion layer (d~1000 Angstrom) forms. Peak shape vs crystal temperature: The peak broadens with T Fermi level pinning: the work function of Si(111) (i.e. The position of the Fermi level) is independent of the doping level of the bulk Localized states: Surface Tamm states The free electron model cannot be applied to localised states as the d-states. The tight binding model, describing the electron wavefunctions as the superposition of atomic states is then more appropriate. Let’s take a one-dimensional chain: a00 a11 a22 ... 0 orbital on the surface atom (0), 1 orbital on the subsurface atom (1), ... The coefficients a may have real and imaginary parts and must satisfy the Schroedinger equation: where the atomic energy levels, corresponding to the diagonal elements, are set to zero in the bulk, while the off diagonal elements denote the hopping probability between nearest neighbours. v is the energy shift of the surface atom caused by the broken bonds. h implies a dispersion of the bulk band which extends from -2h<E<2h Localized states: Surface Tamm states We seek for solutions in which each coefficient is related to the next by a factor α Substituting we obtain: From the first row : and from the second and following rows: This system can be solved graphically for the unknowns E and α. The bulk band extends over Surface solutions must have |α|<1, so that the wavefunction decays away from the surface and E>2h or E<2h so that it lies outside of the bulk band (BB). This is possible for: for v/h>1 at positive α and for E>2h for v/h<-1 , negative α and E<-2h Surface Tamm state pulled out above BB Surface Tamm state pulled out below BB Localized states: Surface Tamm states Either v is large or h is small. Case of Ag(100). The potential v at the surface atoms is only slightly less attractive than in the bulk (positive v). Tamm Surface State at M-bar: Matrix element in photoemission <f|A·p|i> with A magnetic vector potential lying in the same direction as the electric field of the photon and p the momentum operator. Matrix element has to be even. Γ-M corresponds to a mirror plane of the surface, dxy (i.e. |i> ) is odd with respect to it, while |f> is even. Tamm surface state on Cu(111) (Yang, PRB 54, 5092 (1996)) The energy of A,B e C depends on k bulk states The energy of S does NOT depend on k Surface State GaAs(110): Shockley or Tamm surface states? Shockley or Tamm states depending on the more or less covalent nature of the Ga-As bonds Tamm state since this band comes from a non bonding orbital on the As atoms Image potential states Electrons may be trapped inside the image potential if their energy is in the band gap and they cannot propagate into the bulk. This gives rise to an approximately triangular well. Reminding that the image potential has the asymptotic form: V ( z ) 1 4 | z z0 | Neglecting z0 and looking for solutions like: Inserting into the Schroedinger eq we obtain This eq is identical to the one of the hydrogenic atom with nuclear charge Z Substituting back and Z=1/4 we get: Hence there is therefore an infinite number of image states and they are dense at the vacuum level Image potential states Image states are close to the vacuum energy and are therefore empty: Inverse photoemission experiments If the SS are above EF they are empty and may be observed by inverse photoemission Inverted Shockley gap at L S3 S1 is an Image State, S2 and S2 Shockley States Image potential state measurement by selective adsorption and desorption of electron in HREELS Image potential states extend far into the vacuum Two Photon Photoemission : 2PPE n=1 n=2 Note scale change! Inserting a “buffer layer” the image potential states are stabilized Dispersion of the image states parallel to the surface plane In conclusion the existence of the surface states depends on the atomic structure. Shockley states depend on the scattering properties of the atoms and originate from propagating states Tamm states are described by the superposition of atomic orbitals and originate from localized bulk states Image states depend on the presence of a band gap (originating from the bulk band structure). Their energy is determined by the detailed form of the surface image potential The Jellium Model This model considers the positive charge of the nuclei smeared out over the unit cell into a positive uniform background, a valid first approximation for free electron metals. It gives a reasonably accurate picture of charge density, inner potential and work function The electrons feel the positive potential, V+ , due to the ion cores, the negative electrostatic potential due to all the other electrons, VH (Hartree potential), where is the charge density and the exchange correlation contribution to the potential Vxc . The latter is a functional of the electron density and depends on the variation of the electron density with position. Since the functional is unknown it is usually set to the value of a uniform electron gas with a density equal to the local density Vxc(r)=Vxc(ρ(r)) The homogeneous electron gas and density functional theory The Jellium Model The exchange potential Vxc(r) is determined by consistency, iterating the calculation until input and output values are the same The density is thereby calculated from the standing waves generated from the reflection of the electron waves from the surfaces Tricks to achieve self-consistency include to add only a small fraction of the calculated additional density to the next iteration step The Jellium Model: contributions to the work function + The work function doesn’t vary much for the different elements since the higher electron density is compensated by an increased surface dipole The actual work function value depends on the surface electron density which depends on the crystallographic face Surface Band Structure: Slab calculations and spaghetti diagrams The difficulty: dealing with the absence of periodicity in the vertical direction. The trick: compute the wavefunctions for a 5 to 21 layer thick slab. Periodic wavefunctions in the x-y plane and standing waves in the z direction (expanded in sin and cos functions with coefficients which satisfy the Schroedinger equation) The wavefunction basis has to be augmented with atomic like functions to describe the rapid oscillations close to the nuclei Ni(100) Slab calculations