Download 재난 안전통신망 모바일 백홀 구축 방안

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Recursive InterNetwork Architecture (RINA) wikipedia , lookup

Deep packet inspection wikipedia , lookup

Wireless security wikipedia , lookup

IEEE 802.1aq wikipedia , lookup

TV Everywhere wikipedia , lookup

Zero-configuration networking wikipedia , lookup

Net bias wikipedia , lookup

Wake-on-LAN wikipedia , lookup

Computer network wikipedia , lookup

Distributed firewall wikipedia , lookup

Cellular network wikipedia , lookup

Cracking of wireless networks wikipedia , lookup

Network tap wikipedia , lookup

Airborne Networking wikipedia , lookup

Piggybacking (Internet access) wikipedia , lookup

Multiprotocol Label Switching wikipedia , lookup

Transcript
재난 안전통신망
모바일 백홀 구축 방안
- Seamless Network 을 위한 인프라
김승환([email protected])
Technical Solution Team
System Engineer
AGENDA
재난 안전망을 위한 인프라 요구 사항
IP/MPLS 기반 모바일 백홀망 구축의 필요성
주니퍼 “SOSE” 아키텍처
Virtualized Mobile Network 으로의 진화
Service virtualization & chaining 혁신 방안
미래 지향적 Seamless(무중단) Network 구축
재난 안전망을 위한
인프라 요구 사항
미래 공공안전의 모습
차세대 통신 기술 + 멀티미디어 + 일원화 + 인프라
입체적 재난 통신
스마트 경찰
홍주희 기자 블로그 [email protected]
재난 안전망을 위한 인프라 요구 사항
모바일 백홀 인프라 요구 사항
back·haul
(트럭·화물선 등의) 귀로, 역송(逆送); 귀로 화물
the backhaul portion of the network comprises the intermediate links between the core
network, or backbone network and the small subnetworks at the "edge" of the entire
hierarchical network.
네트워크 정의:
"유선 또는 무선에 흐르는 데이터를 한곳에 모아서 백본(코어) 망으로
전달해주는 역할“
모바일 정의:
"음성 또는 데이터를 기지국에서 모아서 해당 통신 사업자의
백본(코어)망에 전달해 주는 역할"
재난 안전망을 위한 인프라 요구 사항
주니퍼 모바일 백홀 디자인
EPC
(Evolved Packet Core)
IP Network
재난 안전망을 위한 인프라 요구 사항
모바일 백홀망의 중요성 대두: ALL IP 환경으로의 변화
Capacity. Coverage. Seamless.
예측 불가능한 데이터 용량 증가
 음성위주의 서비스에서 IP 위주의 서비스로의 패러다임 변화
 음성 < 데이터 < 멀티미디어(백홀 크기 = 4G 용량 결정)
LTE 기술로 인한 스마트폰 커버러지 이슈 발생
 QoE(사용자 체험 만족도)를 높이기 위한 커버러지 증가
 핫 스팟 지역을 위한 small cell 사이트 요구
유선 네트워크망 이상의 안정성과 무중단 서비스의 요구
 Seamless Network 을 위한 인프라
IP/MPLS 기반
모바일 백홀망 구축의 필요성
모바일 백홀망 아키텍처의 변화
LTE 를 기점으로 ALL IP 로의 아키텍처 요구
RAN
BACKHAUL
CORE
Backhaul
T1 / E1
MME
Not Scalable
Nonhomogeneous and
legacy technologies make it
difficult to cost-effectively scale
the network
Ethernet
Slow to Adapt
MPLS-TP
Manual processes to provision
and manage make it difficult to
adapt to dynamic traffic patterns
SGW
Rigid Services
IP/MPLS
Metro Aggregation
IP Core
EPC
IP
IP services are location-specific
and tied to physical platforms
SC
Not Secure
TDM, Eth, MPLS-TP,
패킷 IP
기반
MPLS,
Ethernet 아키텍처
End-to-End
IP/MPLS
IP
Security is an afterthought
leading to serious performance
and brand impact due
to outages
IP/MPLS 기술의 필요성
Why not legacy technology?
1. LTE 아키텍처
 ALL IP 기반의 다양한 서비스를 위한 아키텍처를 요구
 다양한 환경의 전송 기술을 사용 가능 (TDM, ATM, Ethernet 등)
 평평한 구조의 IP 인프라를 요구
2. 검증된 기술
 다양한 통신 사업자를 통한 업계 검증된 기술
 IP/MPLS 기술을 이용한 VPN 서비스
3. 캐리어
그레이드급
역량




Scalability
Resiliency
Traffic Engineering plus QoS
Reliability
IP/MPLS 기술의 필요성
VPN 서비스
Lossless Handover 를 위한 효율성 제공
 X2 reference point 통한 핸드오버 발생시 최적의 경로 제공으로 latency 최소화
 단말 간 직접 통신, 그룹통신, 푸쉬투토크, 단독기지국모드 기능의 효율적인 경로 제공 가능
eNB
eNB
CSR
CSR
백홀망
백홀망
A-RTR
A-RTR
eNB
eNB
CSR
CSR
(E-Line과 같은) 백홀망을 통해, “point-to-point”
서비스를 사용한다면, Aggregation 라우터에서 X2가
헤어핀 현상 발생
(L3VPN과 같은) “multi-point” 서비스를 사용하여,
X2에 효율적인 루트제공
IP/MPLS 기술의 필요성
MPLS to the Access
단순하면서 통일성 있는 서비스 정책가능
 QoS, OAM 및 Traffic-Engineering 을 Core 에서 Access 까지 단순화하여 운영 가능
Provisioning points
EPC
ACCESS
AGG.
MPLS
MPLS
CORE
eNB
eNB
Provisioning points
MPLS
IP/MPLS 기술의 필요성
Fast Convergence(Fast Reroute: FRR) 서비스
Seamless 통신을 위한 최적의 서비스 제공
 트래픽이 흐르는 모든 구간에서 링크, 시스템 문제 발생시 50 msec 이하의 FRR 서비스 제공
 각 계위에 따라 구간별 FRR 동작이 아닌, 전체 백홀망을 기준으로 FRR 서비스 제공은 필수
EPC
ACCESS
AGG.
eNB
Traffic FRR
< 50msec
eNB
CORE
FRR(Fast Reroute) DEMO
주니퍼 “SOSE” 아키텍처
Virtualized Mobile Network 으로의 진화
Service virtualization & chaining 혁신 방안
미래 지향적 Seamless(무중단) Network 구축
SELF-ORGANIZED, SERVICE-ENABLED BACKHAUL
주니퍼 “SOSE” 아키텍처
Service Virtualization
Orchestrator
SDN Contr.
PCE
SON
 Flexibility to centralize or distribute
OSS / BSS
 Network APIs for monetization
PCRF
Self Optimization
Analytics
 Enables demand and service agility
Indoor Small Cells
PE
RRU
PE
 Reduces overprovisioning cost
SecGW
AN
Macro Cell
2G / 3G / 4G
C-RAN
MME
Seamless Network
 2G / 3G / LTE on common IP / MPLS
 Scalable for small cells growth
S-GW
mmWave
 Centralized or distributed SecGW
 Superior QoE through timing and
SLA management
Outdoor Small Cells
 Reduced TCO with rapid deployment
NLOS
IP / MPLS
 Builds a foundation for service agility
START WITH SEAMLESS NETWORK
Preparing for SDN to Manage Future Network Demands
Piecemeal Solution
Limited Scale, Slow Provisioning, High Total Cost
Scalable
BTS/eNB
Service
end-point
Access
Aggregation
Ethernet
IP / MPLS
DOMAIN #1
DOMAIN #2
Core
BSC / RNC
IP / MPLS
DOMAIN #3
Stitching point
VRF <-> VRF
Stitching point
VLAN <-> VRF
SGSN / S-GW
Service
end-point
Agile
Seamless Network
SINGLE CONTROL PLANE
Service Rich
BTS / eNB
Access
Aggregation
IP / MPLS
IP / MPLS
DOMAIN #1
DOMAIN #2
Core
BSC / RNC
IP / MPLS
SGSN / S-GW
DOMAIN #3
SEAMLESS MPLS
Service
end-point
Simplified Service Provisioning
(single provisioning point per connection)
Service
end-point
SEAMLESS NETWORK
Scaling Through Programmability, Operational, and Security Innovations
Decoupled Services and Transport
Operational Efficiency – RD
Service-1
EMS
Service-2
VPN
Config. Server
OAM
Service Node
Service
Provider
Core
DNS
ISP NTE
CSR
Provides scale at low
operational cost due to
service transparency
Enables “plug-n-play”
within mobile backhaul
to reduce TCO
ADD SELF OPTIMIZATION
Leveraging SDN Principles to Manage Future Network Demands
 Different
NMS domains
Scalable
 Manual
update
process
 Error prone,
slow
X
X
Z
A
Z1
Present Mode
Agile
[subs, end-pts., SLA]
 Autonomously
updated
Self
Optimization
 Fully optimized
Service Rich
 Accurate
and agile
OSS / BSS
SON
RAN
[SLA (sub, svc)]
Analytics
Engine
SDN
Complex
Seamless Network
EPC
SELF OPTIMIZATION THROUGH PCE
Minimize Overprovisioning Cost While Maintaining the QoE
NETWORK
PRIMITIVES
1. Understand real-time topology
2. Establish a path through the network(s)
3. Select what traffic may (not) use this path
Topology
Discovery
ANALYZE
Path
Computation
OPTIMIZE
Path
Installation
VIRTUALIZE
Self-Optimization Engine
Routing
Configuration
Path Computation
Element
1: IGP / BGP-TE
3: Netconf / YANG
2: PCE-P
 One-way, one
session per network
 Two-way, session with
each head-end node
 Two-way, session with
each head-end node
RAN
EPC
ANALYTICS
ENGINE
MONETIZE THROUGH VIRTUALIZATION
Leverage SDN / NFV Principles to Manage Future Network Demands
Services
Complex
Caching
Security
DPI
Scalable
NFV
SDN
Complex
Agile
Service Chaining
Self
Optimization
Analytics
Engine
SON
Service Rich
RAN
Seamless Network
EPC
SERVICE VIRTUALIZATION AND CHAINING
Centralize or Distribute Services for Maximum Architectural Flexibility
Orchestrator
Distributed Services
Svc1
Centralized Services
SDN Contr.
Svc2
Svc3
PCRF
Mobile Core
Services Complex
P-GW
MME
SGi
CSR
RAN
Agg.-Router
S-GW
Virtualized
Pre-Provisioned
Dynamically
Adjusted
Horizontally
Scaled
JUNIPER’S POINT OF VIEW
Service-enabled backhaul provides monetization opportunities
Leveraging services agility through NFV-based innovations
$
To maximize ARPU, enhance QoE and reduce churn
주니퍼 솔루션을 통한
백홀망 구성 예시
재난 안전망 모바일 백홀망 구성 예시
센터노드
MX960
EPC
동면리
광역시도/기관
시군구
ACX1100
MX240
MX104
ACCESS
CORE
AGG.
ACCESS
HSS
MME
PCRF SGW/PGW
ACCESS
Seamless MPLS
주니퍼 솔루션 포트 폴리오
하나의 제품군으로, 20 Gbps 에서 80 Tbps까지
80Tbps
MBH Family
One JUNOS
One TRIO CHIPSET
One UNIVERSAL EDGE
Extending Performance, Services, and Access
40Tbps
10.56Tbps
Midrange Family
5.76Tbps
1.92Tbps
20 ~ 80Gbps
ACX
MX104
MX 5
MX 10
MX 40
MX 80
MX 240
MX 480
MX 960
MX 2010
MX 2020
EPC CORE router
MX960
•
14 Slot Chassis
•
Physical size
• Height: 16RU (about 1/3 rack), Depth: <800mm deep
•
System capacity
• 14 slots - 2 for Fabric Cards / REs with the option of 1 additional Fabric Card (SCB) for
redundancy
• Up to 10Tbps from 11 line cards
• System reuses existing SCBs, REs, DPCs and MPCs – common across all MX platforms
•
Dependable hardware
• Passive Mid-Plane
• Redundant Routing Engines
• Redundant Switching Fabric (2+1)
• Distributed Packet Forwarding Architecture
• Redundant Fan & Power
•
Power and cooling
• Front-to-back cooling with separate push-pull fan assemblies
• Holds up to 2 fan trays (1+1 redundancy)
• Holds up to 4 power supplies (2+2 DC, 2+2 AC)
• Rear-side power cabling
CORE router
MX240
•
4 Slot Chassis
•
Physical size
• Height: 5RU, Depth: <800mm deep
•
System capacity
• 4 slots – 2 available for Fabric Cards / REs
• Up to 1.92Tbps from 3 line cards
• System reuses existing SCBs, REs, DPCs and MPCs – common across all MX platforms
•
Dependable hardware
• Passive Mid-Plane
• Redundant Routing Engines (1+1)
• Redundant Switching Fabric (1+1)
• Distributed Packet Forwarding Architecture
• Redundant Power
•
Power and cooling
• Side to Side cooling
• Holds up to 4 power supplies (1+1 DC, 1+1 AC 200-240VAC, 2+2 AC 100-110VAC)
• Rear-side power cabling
Aggregation CORE router
MX104
 Compact, Redundant & Future proof
 Trio based PFE – 80G
 7.5 inches (W) x 3.5RU (H) x 9.5 inches (D)

ETSI-300 compliant
 Dual redundant hot-pluggable REs for Control Plane redundancy
 Dual redundant 1RU 600 Watt PSUs; AC and DC inputs variants
 Wide operating temp range -40C to +65C
 Forced cooling with side-to-side airflow; FRU’able fan tray
 Alarm extension ports
•
Modular Design:
 4x10GE SFP+ LAN/WAN uplink ports (built-in)
 4 MIC Slots -~20G BW per slot
ACCESS CORE router
ACX1100
 Universal access for mobile, business and residential
 Enhances the Universal Edge thru consistent end-end experience
 Open system for innovation and flexibility
 Provides lower footprint (smaller form factor)

Platforms delivers 3x capacity of nearest competitor

Seamless MPLS provides most flexible service architecture1

Integrated precision timing for highest QoE (IEEE1588-2008, SyncE)

Extensive end-to-end network monitoring: Latency, jitter, OAM

Hardened fan-less design for reliable outdoor operation with improved power efficiency

Probe and SLA measurement eliminates the need for a separate NID
 1G router, Ethernet-only
 12xGE (8xRJ45, 4xRJ45/SFP)
CUSTOMER
CAST STUDIES
MOBILE BACKHAUL CUSTOMERS
With a strong pipeline
built on IP/LTE migration
PROFILE FOR SUCCESS
DQE
Challenges
 Sprint has been back-charging DQE deeply on SLAs for
the T-1 backhaul
 This has noticeably impacted revenue
 As they push into IP backhaul, there is serious concern
that their customer will have better KPI data and use this
to invoke the penalty clauses in the SLA
Winning Strategy
 Juniper given a compliance matrix of Sprint’s Ethernet
requirements for MBH document (TS-0189)
 For the North American market, SLA enforcement is THE
key for success with mobile service providers and AAVs
 Y1731 and RFC2544 data collection by the Junos Space
with 180 days of data available…was important
WHOLESALE
BACKHAUL
NETWORKS
MAIN CUSTOMERS
– SPRINT AND
T-MOBILE
PROFILE FOR SUCCESS
Telecom Italia
Challenges
 Universal Access: Support for wide range of OPM
services: residential access, business access, mobile
backhaul, IPTV, wholesale GBE, …
 Mandatory requirements: Scalability, resiliency, trouble
shooting, manageability, multi-vendor interoperability
 Scalable and future proof
 Integration into a multi-vendor network
Winning Strategy
 Standard: Seamless 100% IP/MLPS transport migration
 Total teamwork between Juniper & NSN
GLOBAL MOBILE
OPERATOR:
12TH LARGEST
BY REVENUE
19TH
LARGEST BY
CONNECTIONS