Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1 Chapter 4 The Multivariate Normal Distribution 4.1 Definition Intuition: Let X ~ N , 2 . Then, the density function is 1 2 x 2 1 f x exp 2 2 2 2 1 2 1 2 1 1 1 x 1 x exp Var X 2 Var X 2 Definition (Multivariate Normal Random Variable): A random vector X1 X 2 X ~ N , X p with E X , Cov X has the density function p 1 1 2 1 2 1 x t 1 x f x f x1 , x2 , , x p exp 2 det 2 Moment Generating Function of Multivariate Normal Random Variable: Let X1 t1 X t 2 2 X ~ N , , t . X p t p 2 Then, the moment generating function for X is M X t M X t1 , t 2 ,, t p E exp t t X E exp t1 X 1 t 2 X 2 t p X p 1 exp t t t t t 2 Result: If X ~ N , and C is a pn matrix of rank p, then CX ~ N C , CC t . [proof:] Let Y CX . Then, s C t E exp s X M Y t E exp t t Y E exp t t CX t t t t s t C 1 exp s t s t s 2 1 exp t t C t t CC t t 2 Since M Y t is the moment generating function of N C , CC t , CX ~ N C , CC t . ◆ 3 Result: 2 If X ~ N , I then TX ~ N T , 2 I , where T is an orthogonal matrix. Result: If X ~ N , , then the marginal distribution of subset of the elements of Y is also multivariate normal. X1 X 2 X ~ N , , then X p X i1 X i X 2 ~ N , X i m , where i1i1 i1i2 i1 i i i2i2 i 2 m p, i1 , i2 , , im 1,2, , p , , 2 1 im imi1 imi2 i1im i2im imim Useful Splus Commands: >ir=rbind(iris[,,1],iris[,,2],iris[,,3]) >irmean=c(mean(ir[,1]),mean(ir[,2]),mean(ir[,3]),mean(ir[,4])) # mean vector >irvar=var(ir) # variance-covariance matrix >ircor=cor(ir) # correlation matrix >plot(ir[,1],ir[,2]) # scatter plot >boxplot(ir[,1],ir[,2],ir[,3],ir[,4]) # box plot >pairs(ir) # all pairwise scatter plots 4 >brush(ir) # brush a matrix of scatter plots Result: (i) If X1 and X 2 are independent random vecotors, then Cov X 1 , X 2 0 . 1 11 X1 , ~ N (ii) If X 2 2 21 12 X1 and X 2 22 , then 12 0 . are independent (iii) If X1 and X 2 are independent and are distributed as N 1 ,11 and N 2 ,22 , respectively, then 1 11 X1 , ~ N X 2 1 0 0 22 Example 1: X1 X Let X 2 be X3 X 4 N , with 4 1 0 0 1 3 0 0 X X Then, 1 and 3 are independent. X 2 X 4 Result: 0 0 1 2 0 0 2 . 5 5 1 11 X1 , ~ N Let X 2 2 21 12 22 and 22 0 . Then the conditional distribution of X 1 , given that X 2 x2 , is normal and has mean 1 12 221 x2 2 and Covariance 11 12 221 21 . [proof:] We only need to prove X 1 1 12 221 x2 2 ~ N 0, 11 12 221 21 then, X1 ~ N 1 12221 x2 2 , 11 12 22121 , . By taking I A 0 12 221 I so X 1 1 I 12 221 X 1 1 X 1 1 12 221 X 2 2 A . X X X 2 2 0 I 2 2 2 2 By the result (page 2 or Result 4.3 in textbook), X 1 1 X 1 1 12 221 X 2 2 t A ~ N 0, AA , X 2 2 X 2 2 where I 12 221 11 12 I AA I 21 22 12 221 0 t Since X1 1 12221 X 2 2 t 0t 11 12 221 21 0 t . I 0 22 X 2 2 and have zero covariance, they are independent. Therefore, the conditional distribution X 1 1 12221 x2 2 is the same as the 6 unconditional distribution of X1 1 12221 X 2 2 . That is, X 1 1 12 221 x2 2 ~ N 0, 11 12 221 21 . Theorem: Let X ~ N p , with 0 . Then Q X 1 X ~ p2 t [proof:] Since orthogonal 1 0 0 AAt , is positive definite, matrix 0 2 0 where A AAt At A I ( 0 0 . Then, p 1 A1 At A1 At . Thus, Q X 1 X t X A1 At X t Z t 1Z where Z At X . Further, is a real ) and 7 Q Z t 1Z Z1 Z2 1 1 0 Zp 0 2 i 1 Z Z i i 1 i i 1 i p 0 p Therefore, if we can prove 2 0 Z1 0 Z2 1 Z p p 0 2 Z i ~ N 0, i and Zi are mutually independent, then Zi ~ N 0,1, Q i i 1 i p Zi The proof is as follows. Since 2 ~ p2 . Z At X , then Z ~ N 0, At A N 0, , where At A At AAt A . That is, Z i ~ N 0, i . Useful Splus Commands: comatrix=matrix(0,2,2) comatrix[1,]=c(2,1) comatrix[2,]=c(1,1) mvector=c(0,2) ### Density, cumulative probability, and random generation for the multivariate 0 2 1 ### normal N , 2 1 1 8 msample=rmvnorm(10,mvector,comatrix) pmvnorm(c(0,2),mvector,comatrix) ## 10 random observations ## P X 1 0, X 2 2 dmvnorm(c(0,2),mvector,comatrix) ## f 0,2 1 2 ### Density, cumulative probability, and random generation for the multivariate 0 1 0 ### normal N , 0 0 1 msample=rmvnorm(20) ## 20 random observations pmvnorm(c(0,0)) ## P X 1 0, X 2 0 dmvnorm(c(0,0)) ## f 0,0 1 2 Theorem: Let X 1 , X 2 ,, X n be mutually independent with X j ~ N j , . Then, n n 2 V1 c1 X 1 c2 X 2 cn X n ~ N c j j , c j . j 1 j 1 Moreover, V1 and V2 b1 X 1 b2 X 2 bn X n are jointly multivariate normal with covariance matrix n 2 c j j 1 bt c bc n . b 2j j 1 t Consequently, V1 and V2 are independent if b c t n b c j 1 j j 0.