* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Section 6.3 and 6.4 AA, SSS, SAS Similarity
Technical drawing wikipedia , lookup
History of geometry wikipedia , lookup
Apollonian network wikipedia , lookup
Reuleaux triangle wikipedia , lookup
Rational trigonometry wikipedia , lookup
Euler angles wikipedia , lookup
Trigonometric functions wikipedia , lookup
History of trigonometry wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Geometry Sections 6.3 & 6.4 Proving triangles are similar using AA, SSS, SAS Objective: SWBAT use the AA, SSS, SAS similarity postulates. Angle- Angle (AA) Similarity Postulate If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar. A B D C E ABC ~ DEF because A D and B E F Side-Side-Side (SSS) Similarity If the corresponding side lengths of two triangles are proportional, then the triangles are similar. A D 6 4 8 B ABC ~ because 5 12 C E 10 F DEF Side-Angle-Side (SAS) Similarity If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar. A D 10 ABC ~ because 15 B 12 C E 18 F DEF B E, Example 1: Example 2: Example 3: Example 4: