Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Super-Adiabatic Particle Number: Vacuum Particle Production in Real Time Gerald Dunne University of Connecticut & Helmholtz Institut Jena, Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena KITP Program Frontiers of Intense Laser Physics: August 5, 2014 R. Dabrowski & GD: 1405.0302, PhysRevD90(2014) Schwinger Effect: Pair Production from Vacuum 8 Gerald V. Dunne ⇥ E e e+ ~ Schwinger critical field: 2eE mc ∼ 2mc2 ⇒ 2 3 m c Figure electric, field can apart2 a virtual 1016 V/cm Ic ≈ 4 ×tear 1029 W/cm Ec ≈ 2. A≈ static e~ an asymptotic electron and positron, as shown on the lef field does not break this virtual dipole apart, as shown o experimentally inaccessible scales out of the page. but, estimate based on constant-field approximation ... Importance of Pulse Shape: Quantum Interference I realistic short laser pulses have temporal structure [envelope, carrier-phase, chirp, focussing, ...] I particle production is extremely sensitive to these, due to quantum interference I we can learn to take advantage of this, to enhance the particle production effect I critical intensity can be lowered several orders of magnitude Importance of Pulse Shape: Quantum Interference constant E field monochromatic or single pulse pulse with sub-cycle structure; carrier phase effect chirped pulse, Gaussian beam, ... Particle Number in Quantum Field Theory I the Schwinger effect: non-perturbative production of electron-positron pairs when an external electric field is applied to the quantum electrodynamical (QED) vacuum I Parker-Zeldovich effect: cosmological particle production due to expanding cosmologies I Hawking radiation: particle production due to black holes and gravitational horizon effects I Unruh radiation: particle number as seen by an accelerating observer Particle Number in Quantum Field Theory QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...) h0out | 0in i ≡ exp i Γ[A] ~ vacuum persistence probability: 2 2 2 |h0out | 0in i| = exp − Im Γ[A] ≈ 1 − Im Γ[A] ~ ~ Particle Number in Quantum Field Theory QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...) h0out | 0in i ≡ exp i Γ[A] ~ vacuum persistence probability: 2 2 2 |h0out | 0in i| = exp − Im Γ[A] ≈ 1 − Im Γ[A] ~ ~ Fredholm determinant: (Feynman, Schwinger, Matthews/Salam, ...) Γ[A] = ln det (i D / + m+i) , simple computation for constant E field Dµ ≡ ∂µ − ie Aµ ~c Particle Number in Quantum Field Theory QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...) h0out | 0in i ≡ exp i Γ[A] ~ vacuum persistence probability: 2 2 2 |h0out | 0in i| = exp − Im Γ[A] ≈ 1 − Im Γ[A] ~ ~ Fredholm determinant: (Feynman, Schwinger, Matthews/Salam, ...) Γ[A] = ln det (i D / + m+i) , Dµ ≡ ∂µ − simple computation for constant E field for realistic laser pulses we want more information: I momentum distributions, spectra, ... I optimization and quantum control I backreaction ie Aµ ~c Particle Number in Quantum Field Theory |0iin t = −∞ |0iout intermediate time t = +∞ Particle Number in Quantum Field Theory local information? E 2 m2 π Im Γ = V4 3 e− E 4π ? →? Z d4 x m2 π E 2 (x) − E(x) e 4π 3 ??? locally constant field approximation misses a lot of important physics: quantum interference how to formulate this in general ? perturbative effective field theory: Z Γpert [A] = d4 x Lpert F, ∂F, ∂ 2 F, .... non-perturbative effective field theory: Im Lnon−pert (x) = ? Puzzles with Particle Production in addition to experimental challenges, vacuum particle production presents fundamental conceptual and computational problems I can it be seen ? I optimization and quantum control ? I particle concept in time-dependent background fields ? I backreaction ? I cascades ? I maximum electric field ? I correlations and quantum noise ? I entanglement entropy and mutual information ? Mode Decomposition of Fields spatial homogeneity ∗ (t) ⇒ Φk (t) = ak fk (t) + b†−k f−k mode Klein-Gordon equation: 2 d 2 + ωk (t) fk (t) = 0 dt2 Schwinger effect: 2 2 ωk2 (t) = m2 + k⊥ + kk − Ak (t) Parker-Zeldovich effect: metric ds2 = −dt2 + a2 (t) dΣ2 2k + d − 1 2k + d − 3 2 2 2 2 sech (Ht) ωk (t) = H γ + 2 2 Adiabatic Particle Number In a time-dependent background field there is no unique separation into positive and negative energy states with which to identify particles and anti-particles [Dirac, DeWitt, Parker]. For a slowly varying time-dependent background we can define an adiabatic particle number with respect to a reference basis that reduces to ordinary positive and negative energy plane waves at intial and final times when the background is constant Particle Number in Quantum Field Theory |0iin t = −∞ |0iout intermediate time t = +∞ Bogoliubov Transformation Bogoliubov transformation to time-dependent creation/annihilation operators: ãk (t) b̃†−k (t) = ak αk (t) βk∗ (t) βk (t) αk∗ (t) b†−k unitarity: |αk (t)|2 − |βk (t)|2 = 1 ∗ Φk (t) = ak fk (t) + b†−k f−k (t) ∗ = ãk (t)f˜k (t) + b̃†−k (t)f˜−k (t) f˜k (t): reference mode functions ∗ fk (t) = αk (t) f˜k (t) + βk (t) f˜−k (t) Bogoliubov Transformation & Adiabatic Particle Number time-dependent adiabatic particle number: Ñk (t) ≡ h0| ã†k (t) ãk (t) |0i = |βk (t)|2 vacuum: ak |0i = 0 = b−k |0i total number of particles produced in mode k: Ñk ≡ Ñk (t = +∞) = |βk (t = +∞)|2 in this talk, consider the full time evolution of the adiabatic particle number Ñk (t), as it evolves from an initial value of zero to some final asymptotic value Ñk ≡ Ñk (t = +∞). Bogoliubov Transformation & Adiabatic Particle Number immediate problem: time-dependent adiabatic particle number, Ñk (t), depends on the reference mode functions and so is not unique, at intermediate times even though the final value at t = +∞ is unique Basis Dependence of Adiabatic Particle Number 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 -15 -10 -5 0 5 10 15 20 t Schwinger effect: E(t) = E sech2 (at). Pulse parameters: E = 0.25, a = 0.1, k⊥ = 0, kk = 0 blue and red defined w.r.t. different reference mode functions Basis Dependence of Adiabatic Particle Number close-up at late times 0.00002 0.000015 0.00001 5. ´ 10-6 0 15 20 25 30 35 40 45 t blue & red defined w.r.t. different reference mode functions same final value, but very different at intermediate times Basis Dependence of Adiabatic Particle Number ∗ (t) reference functions: fk (t) = αk (t) f˜k (t) + βk (t) f˜−k Rt 1 f˜k (t) ≡ p e−i Wk 2 Wk (t) f˜k (t) solves time-dependent oscillator equation if !2 Ẅk 3 Ẇk Wk2 = ωk2 − − 2Wk 4 Wk leading order adiabatic expn : Wk (t) = ωk (t), cf. WKB also need momentum field operators Πk (t) = Φ̇†k (t) 1 1 ∗ ˙ ˜ fk (t) = −i Wk (t) + Vk (t) αk (t) fk (t)+ i Wk (t) + Vk (t) βk (t) f˜−k (t) 2 2 Basis Dependence of Adiabatic Particle Number ∗ (t) reference functions: fk (t) = αk (t) f˜k (t) + βk (t) f˜−k Rt 1 f˜k (t) ≡ p e−i Wk 2 Wk (t) f˜k (t) solves time-dependent oscillator equation if !2 Ẅk 3 Ẇk Wk2 = ωk2 − − 2Wk 4 Wk leading order adiabatic expn : Wk (t) = ωk (t), cf. WKB also need momentum field operators Πk (t) = Φ̇†k (t) 1 1 ∗ ˙ ˜ fk (t) = −i Wk (t) + Vk (t) αk (t) fk (t)+ i Wk (t) + Vk (t) βk (t) f˜−k (t) 2 2 freedom in Wk (t) & Vk (t) encodes arbitrariness in defining positive and negative energy states at intermediate times Basis Dependence of Adiabatic Particle Number Conventional choices: 1. Wk (t) = ωk (t) and Vk (t) = 0 → time evolution of Bogoliubov coefficients: ! Rt ω̇k (t) α̇k (t) 0R e2i ωk αk (t) = t βk (t) β̇k (t) 2ωk (t) e−2i ωk 0 Ẇk (t) 2. Wk (t) = ωk (t) and Vk (t) = − W → time evolution of k (t) Bogoliubov coefficients: ! Rt 1 3 ω̇k2 (t) ω̈k (t) α̇k (t) αk (t) 1R e2i ωk = − t βk (t) β̇k (t) 4i 2 ωk3 (t) ωk2 (t) −e−2i ωk −1 Computation for Time Dependent Electric Fields I in a chosen basis, evolve Bogoliubov coefficients αk (t) and βk (t) from t = −∞ to t = +∞, with βk (−∞) = 0 αk (−∞) 1 = βk (−∞) 0 −→ αk (+∞) βk (+∞) I total asymptotic particle number: Ñk = |βk (t = +∞)|2 I do for each momentum mode k, momentum of the produced particles along the electric field direction I 2 |βk (t=+∞)| useful analogy: |α 2 is the reflection probability for k (t=+∞)| over-the-barrier scattering for the "Schrödinger equation" 2 d 2 2 ) f (t) − dt2 − (kk − Ak (t)) fk (t) = (m2 + k⊥ k Importance of Quantum Interference I realistic short laser pulses have temporal structure [envelope, carrier-phase, chirp, ...] I particle production is extremely sensitive to these, due to quantum interference I we can learn to take advantage of this, to enhance the particle production effect Particle Number in Quantum Field Theory |0iin t = −∞ |0iout intermediate time t = +∞ Dynamical Schwinger Mechanism [Schützhold, GD, Gies, PRL 2008; Di Piazza, Lötstedt, Milstein, Keitel, PRL 2009] superimpose strong slow field (optical laser) with fast weak pulse (X-ray laser): leads to exponential enhancement lowers Schwinger critical field by several orders of magnitude subcycle structure of the laser. er. We To complete the physical picture, we consider the overmakes all envelope of the longitudinal momentum distribution, mentum again for " ¼ 0, averaging over the rapid oscillations. own in When there are more than three cycles per pulse (! * unction 3), the peak of the momentum distribution is located near hat, for carrier phase effect [Hebenstreit, Alkofer, GD, Gies, PRL 2009] pk ð1Þ ¼ 0, whereas for ! & 3 the peak is shifted to a llatory nonzero value. Furthermore, the Gaussian width set in of the 2 employed , howtthe pffiffiffiffiffiffiffiffi WKB approximation Eq. (4), which scales ~ = $, is obviously somewhat broader than with eE 0 E(t) = E0 exp − 2 cos (ω t + φ) field is true distribution, as is shown in Fig. 5. We can quantify τ distrithis discrepancy in the width, by extending the WKB result e oscilbeyond the Gaussian approximation inherent in Eq. (4). We direct PHYSICAL REVIEW LETTERS mmetric PRL 102, 150404 (2009) 14 14 o is the 5 10 5 10 14 perfect 5 10 menta, roduc14 14 3 10 3 10 ts from 3 10 14 r-phase esting a 14 14 rch for 1 1101014 1 10 Quantum Interference: Carrier Phase =0 k MeV ⇥= week ending 17 APRIL 2009 2 k MeV 0.6 0.4 0.2 0 0.2 0.4 0.6 k MeV od in a 0.4 0.2 0 0.2 0.4 0.6 0.4 0.2 0 0.2 0.4 0.6 as first FIG. 5. Comparison of the asymptotic distribution ~ 1Þ for k~? ¼ 0 ~ 1Þ for k~?function FIG. 4. Asymptotic distribution function fðk; distribution function fðk; ¼0 ioniza- FIG. ~3.1Þ Asymptotic fðk; for k~ ¼ 0 (oscillating solid line) with the prediction for ! ¼ 5, E0 ¼ 0:1Ecr , and " ¼ !#=2. The center of the ¼ 0:1Ecr , and " ¼ !#=4. The center of the ! ¼ 5, E0 ? re, the for time-domain analogue of multiple-slit interference, from of Eq. (4)is(dotted improved ð1Þthe % 102 keV. WKB approximation distribution is shifted to pk ð1Þ % 137 keV. distribution shiftedline) to pkand m that based on an expansion of Eq. (5) (dashed line) for ! ¼ 5, E0 ¼ 0:1Ecr , and " ¼ 0. ed pair vacuum creation events. The fringes are large for " ¼ !#=2, since sensitive dependence on the other shape parameters, such the field strength has two peaks of equal size (though assensitive !. measure of sub-cycle pulse then structure 150404-3 opposite sign) which act as two temporally separated slits. In fact, there is an even more distinctive dependence on Moving the carrier phase away from " ¼ !#=2 corre- Quantum Interference: Ramsey Effect alternating-sign pulse sequence [Akkermans, GD, PRL 2012] Nk2-pulse Nk10-pulse 3.10-13 7.10-12 5.10-12 2.10-13 3.10-12 10-13 10-12 -1.0 -0.5 0.0 0.5 1.0 k -1.0 -0.5 0.0 N -pulse sequence ⇒ N 2 enhancement in certain modes time-domain analogue of N-slit interference measured in tunnel junctions (Gabelli/Reulet, 2012) 0.5 1.0 k Quantum Interference: Complex WKB d2 2 2 − 2 − (kk − Ak (t)) fk (t) = (m2 + k⊥ ) fk (t) dt I over-the-barrier scattering: turning points only in the complex plane I pulses with sub-structure have multiple sets of turning points I WKB integral between complex conjugate turning points → magnitude of creation event I WKB integral between neighboring turning points → interference phases R Re(t )+i Im(tp ) R Re(t ) X −2i Re(t p) ωk (t) dt −2i −∞ p ωk (t) dt p βk (∞) ≈ e e tp Quantum Interference: Stokes Phenomenon particle production requires global information to connect t = −∞ to t = +∞ Stokes lines and anti-Stokes lines separate different regions of asymptotic behavior N ImHtL 2. ´ 10-8 t1 t3 1.5 ´ 10-8 ReHtL 1. ´ 10-8 5. ´ 10-9 t2 t4 1.0 1.5 2.0 2.5 pm particle production = Stokes phenomenon, the appearance/disappearance of exponentially small/large terms as Stokes lines are crossed [Dumlu, GD, PRL 2010] Quantum Interference: Complex WKB 2 /τ 2 E(t) = E0 e−t cos(ω t) 2 /τ 2 E(t) = E0 e−t 4 4 2 2 0 0 -2 -2 -4 sin(ω t) -4 -4 -2 0 2 4 -4 -2 0 2 4 Adiabatic Particle Number and Quantum Interference I what effect does quantum interference have on adiabatic particle number ? I what is happening near the turning points ? tc Stokes line sc Re(tc ) t⇤c e−i The Adiabatic Expansion: recall f˜ = √ Rt Wk 2Wk (t) expand Wk2 = ωk2 − Ẅk 2Wk − 3 4 Ẇk Wk 2 in derivatives of ωk (t): (0) 1. Leading order: Wk (t) = ωk (t) (1) 2. Next-to-leading order: Wk (t) = ωk (t) − 3. Next-to-next-to-leading order: 1 ω̈k 3 ω̇k2 (2) Wk (t) = ωk (t) − − 4 ωk2 2 ωk3 1 − 8 1 4 ω̈k ωk2 − 2 3 ω̇k 2 ωk3 ! (4) ... 13 ω̈k2 99 ω̇k2 ω̈k ω̇k ωk 1 ωk 297 ω̇k4 − +5 5 + + 4 ωk5 4 ωk6 2 ωk4 16 ωk7 ωk e−i The Adiabatic Expansion: recall f˜ = √ Rt Wk 2Wk (t) expand Wk2 = ωk2 − Ẅk 2Wk − 3 4 Ẇk Wk 2 in derivatives of ωk (t): (0) 1. Leading order: Wk (t) = ωk (t) (1) 2. Next-to-leading order: Wk (t) = ωk (t) − 3. Next-to-next-to-leading order: 1 ω̈k 3 ω̇k2 (2) Wk (t) = ωk (t) − − 4 ωk2 2 ωk3 1 − 8 1 4 ω̈k ωk2 − 2 3 ω̇k 2 ωk3 ! (4) ... 13 ω̈k2 99 ω̇k2 ω̈k ω̇k ωk 1 ωk 297 ω̇k4 − +5 5 + + 4 ωk5 4 ωk6 2 ωk4 16 ωk7 ωk a complicated mess !!! ... looks hopeless Super-Adiabatic Basis a closer look at the adiabatic expansion: I adiabatic expansion is divergent (asymptotic) I expressions for Wk (t) in terms of ωk (t) rapidly become more and more complicated I situation look uninteresting and hopeless at high orders I Dingle found remarkable universal large-order behavior (j) Super-Adiabatic Basis Define the “singulant” variable Z t Fk (t) = 2i ωk (t0 ) dt0 tc expand Wk (t) = ωk (t) ∞ X (2l) ϕk (t) l=0 simple and universal large-order behavior: (2l+2) ϕk (t) ∼ − 2 (2l + 1)! π [Fk (t)]2l+2 , l1 Super-Adiabatic Basis 0.001 0.000 0.000 j=2 -0.001 -0.010 -0.002 -0.015 -10 -5 0 5 10 -10 -5 0 t 5 10 t 0.0010 0.0005 0.0005 0.0000 j=4 j=3 0.0000 -0.0005 -0.0015 -0.0015 -10 -0.0005 -0.0010 -0.0010 -5 0 5 10 -10 -5 0 t 0.000 5 10 0.000 j=6 j=5 10 0.005 0.001 -0.001 -0.005 -0.002 -0.003 -10 5 t 0.002 -0.010 -5 0 5 10 -10 -5 0 t t 0.2 0.02 0.1 0.00 j=8 j=7 (0) Wk : 1 term (1) Wk : 3 terms (2) Wk : 8 terms (3) Wk : 19 terms (4) Wk : 41 terms (5) Wk : 83 terms (6) Wk : 160 terms (7) Wk : 295 terms (8) Wk : 526 terms (9) Wk : 911 terms (10) Wk : 1538 terms (11) Wk : 2540 terms j=1 -0.005 -0.2 -0.04 -10 0.0 -0.1 -0.02 -5 0 t 5 10 -10 -5 0 t 5 10 Super-Adiabatic Basis Berry: universal time dependence of Bogoliubov coefficient near turning point: βk (t) ≈ (0) Fk (0) i Erfc (−σk (t)) e−Fk 2 = Im σk (t) ≈ Z tc Stokes line t∗c ωk (t) dt tc 2 ωk (sc ) (t − sc ) p 2 Fk (sc ) sc Re(tc ) t⇤c Super-Adiabatic Particle Number super-adiabatic particle number: (0) 2 1 − Fk Ñk (t) ≈ Erfc (−σk (t)) e 4 recall: optimal order of truncation of an asymptotic expansion depends on the value of the expansion parameter optimal truncation of adiabatic expansion at order j: 1 (0) j ≈ Int Fk − 1 2 Super-Adiabatic Particle Number: examples 0.00008 0.00006 0.00004 0.00002 0 -10 -5 0 5 10 5 10 t 5. ´ 10 - 6 4. ´ 10 - 6 3. ´ 10 - 6 2. ´ 10 - 6 1. ´ 10 - 6 0 -10 -5 0 t Super-Adiabatic Particle Number: examples 5. ´ 10 - 6 4. ´ 10 - 6 3. ´ 10 - 6 2. ´ 10 - 6 1. ´ 10 - 6 0 -10 -5 0 5 10 5 10 t 5. ´ 10 - 6 4. ´ 10 - 6 3. ´ 10 - 6 2. ´ 10 - 6 1. ´ 10 - 6 0 -10 -5 0 t Super-Adiabatic Particle Number: examples 5. ´ 10 - 6 4. ´ 10 - 6 3. ´ 10 - 6 2. ´ 10 - 6 1. ´ 10 - 6 0 -10 -5 0 5 10 5 10 t 0.000012 0.00001 8. ´ 10 - 6 6. ´ 10 - 6 4. ´ 10 - 6 2. ´ 10 - 6 0 -10 -5 0 t Super-Adiabatic Particle Number: examples 5. ´ 10 - 6 0.00008 4. ´ 10 - 6 0.00006 3. ´ 10 - 6 0.00004 2. ´ 10 - 6 0.00002 1. ´ 10 - 6 0 -10 -5 0 5 10 0 -10 -5 5. ´ 10 - 6 5. ´ 10 - 6 4. ´ 10 - 6 4. ´ 10 - 6 3. ´ 10 - 6 3. ´ 10 - 6 2. ´ 10 - 6 2. ´ 10 - 6 -6 1. ´ 10 - 6 1. ´ 10 0 -10 -5 0 5 10 0 -10 -5 t 5 10 0 5 10 5 10 t 5. ´ 10 - 6 0.000012 4. ´ 10 - 6 0.00001 3. ´ 10 - 6 8. ´ 10 - 6 6. ´ 10 - 6 2. ´ 10 - 6 4. ´ 10 - 6 1. ´ 10 - 6 0 -10 0 t t 2. ´ 10 - 6 -5 0 5 10 0 -10 -5 0 Super-Adiabatic Particle Number realistic laser pulses have temporal sub-structure, which means multiple pairs of complex turning points Super-Adiabatic Particle Number super-adiabatic particle number with multiple turning point pairs: interference tc Stokes line sc tc Stokes line Re(tc ) t⇤c sc Re(tc ) t⇤c 2 X 1 (p) (0) (p) Ñk (t) ≈ exp 2iθk exp −Fk,tp Erfc −σk (t) 4 t p Super-Adiabatic Particle Number: examples two alternating-sign pulses ⇒ constructive or destructive interference for different k modes Nk2-pulse 3.10-13 constructive interference 2.10-13 destructive interference 10-13 -1.0 -0.5 0.0 0.5 1.0 k Super-Adiabatic Particle Number: examples two alternating-sign pulses, with constructive interference: 0.00014 0.00012 0.00010 0.00008 0.00006 0.00004 0.00002 0.00000 - 60 - 40 - 20 0 20 40 60 20 40 60 t 0.000025 0.00002 0.000015 0.00001 5. ´ 10 - 6 0 - 60 - 40 - 20 0 t Super-Adiabatic Particle Number: examples two alternating-sign pulses, with constructive interference: 0.000025 0.00002 0.000015 0.00001 5. ´ 10 - 6 0 - 60 - 40 - 20 0 20 40 60 20 40 60 t 0.000025 0.00002 0.000015 0.00001 5. ´ 10 - 6 0 - 60 - 40 - 20 0 t Super-Adiabatic Particle Number: examples two alternating-sign pulses, with constructive interference: 0.000025 0.00002 0.000015 0.00001 5. ´ 10-6 0 -60 -40 -20 0 20 40 60 20 40 60 t 0.000035 0.00003 0.000025 0.00002 0.000015 0.00001 5. ´ 10-6 0 -60 -40 -20 0 t Super-Adiabatic Particle Number: examples two alternating-sign pulses, with constructive interference: 0.00014 0.000025 0.00012 0.00010 0.00002 0.00008 0.000015 0.00006 0.00001 0.00004 5. ´ 10 - 6 0.00002 0.00000 - 60 - 40 - 20 0 20 40 0 60 - 60 - 40 - 20 t 20 40 60 20 40 60 20 40 60 t 0.000025 0.000025 0.00002 0.00002 0.000015 0.000015 0.00001 0.00001 5. ´ 10 - 6 5. ´ 10 - 6 0 0 - 60 - 40 - 20 0 20 40 0 60 - 60 - 40 - 20 t 0 t 0.000035 0.000025 0.00003 0.00002 0.000025 0.000015 0.00002 0.00001 0.000015 0.00001 5. ´ 10-6 5. ´ 10-6 0 0 -60 -40 -20 0 20 40 60 -60 -40 -20 0 Super-Adiabatic Particle Number: examples two alternating-sign pulses ⇒ constructive or destructive interference for different k modes Nk2-pulse 3.10-13 constructive interference 2.10-13 destructive interference 10-13 -1.0 -0.5 0.0 0.5 1.0 k Super-Adiabatic Particle Number: examples two alternating-sign pulses, with destructive interference: 0.0001 0.00008 0.00006 0.00004 0.00002 0.0000 - 60 - 40 - 20 0 20 40 60 20 40 60 t 8. ´ 10 - 6 6. ´ 10 - 6 4. ´ 10 - 6 2. ´ 10 - 6 0 - 60 - 40 - 20 0 t Super-Adiabatic Particle Number: examples two alternating-sign pulses, with destructive interference: 8. ´ 10 - 6 6. ´ 10 - 6 4. ´ 10 - 6 2. ´ 10 - 6 0 - 60 - 40 - 20 0 20 40 60 20 40 60 t 8. ´ 10 - 6 6. ´ 10 - 6 4. ´ 10 - 6 2. ´ 10 - 6 0 - 60 - 40 - 20 0 t Super-Adiabatic Particle Number: examples two alternating-sign pulses, with destructive interference: 8. ´ 10-6 6. ´ 10-6 4. ´ 10-6 2. ´ 10-6 0 -60 -40 -20 0 20 40 60 20 40 60 t 0.00003 0.000025 0.00002 0.000015 0.00001 5. ´ 10-6 0 -60 -40 -20 0 t Super-Adiabatic Particle Number: examples two alternating-sign pulses, with destructive interference: 0.0001 8. ´ 10 - 6 0.00008 6. ´ 10 - 6 0.00006 4. ´ 10 - 6 0.00004 2. ´ 10 - 6 0.00002 0 0.0000 - 60 - 40 - 20 0 20 40 - 60 60 - 40 - 20 8. ´ 10 - 6 8. ´ 10 - 6 6. ´ 10 - 6 6. ´ 10 - 6 4. ´ 10 - 6 4. ´ 10 - 6 -6 2. ´ 10 - 6 2. ´ 10 0 20 40 60 20 40 60 20 40 60 t t 0 0 - 60 - 40 - 20 0 20 40 60 - 60 - 40 - 20 t 0 t 8. ´ 10-6 0.00003 0.000025 -6 6. ´ 10 0.00002 4. ´ 10-6 0.000015 0.00001 2. ´ 10-6 5. ´ 10-6 0 0 -60 -40 -20 0 t 20 40 60 -60 -40 -20 0 t Super-Adiabatic Particle Number: examples alternating-sign pulses with coherent constructive interference: 1 1 0 0 � 75 � 50 � 25 0 25 t 1: 4 50 75 � 100 � 50 0 50 t 1: 4: 9 100 1 Super-Adiabatic Particle Number: examples momentum spectrum for alternating-sign pulses: 0.025 0.025 0.020 0.020 0.015 0.015 0.015 0.015 0.010 0.010 0.010 0.010 0.010 0.010 0.005 0.005 0.005 0.005 0.005 0.005 0.025 0.025 0.025 0.020 0.025 0.020 0.020 0.015 0.000 0.000 -2 -2 -1 -1 0 0 kÈÈkÈÈ 11 22 0.020 0.015 0.000 0.000 -2 -1 -1 00 kÈÈkÈÈ 0.025 0.020 0.015 0.010 0.005 0 kÈÈ 1 2 0.000 -2 -1 0 kÈÈ 1 2 1 1 2 2 0.000 0.000 -2 -2 Super-Adiabatic Particle Number: examples momentum spectrum for alternating-sign pulses: Note thatthat as as a function of Note thethelongitudinal momentum these spectra n-slitspectra interference Note a function of longitudinal momentum theseparticle particle spectra represent represent the n-slit interference that as a function of thek,k,longitudinal momentum k, these the particle represent the pattern, here probed in in thethe time-domain from vacuum [69]. In we theseInmomentum momentum pattern, here probed time-domain fromthe thequantum quantum vacuumfrom [69].the In Figure Figure 13 13vacuum we show show[69]. these pattern, here probed in the time-domain quantum Figure 13 we show spectra (for(for thethe final asymptotic particle number N = Ñ (t = +∞)), for the cases of one, two and three pulses, of two a k k spectra final asymptotic particle number N = Ñ (t = +∞)), for the cases of one, two and three pulses, k k spectra (for the final asymptotic particle number Nk = Ñk (t = +∞)), for the cases of of one, the the forms (36), (37), andand (39), respectively. forms (36), (37), (39), respectively. the forms (36), (37), and (39), respectively. Super-Adiabatic Particle Number: examples t = −7.5 t = −7.5 FIG. 15: t = −7.5 t = +7.5 t = +7.5 t = +7.5 t = +30 t = +30 t = +30 As in (14), but plotted over specific time ranges, ending with cross-sections at t = −7.5, t = +7.5, and t = +30, Super-Adiabatic Particle Number 2 X 1 (p) (0) (p) exp 2iθk exp −Fk,tp Erfc −σk (t) Ñk (t) ≈ 4 t p I super-adiabatic particle number is smooth in time, and in momentum I sensible definition because of universality (Dingle/Berry) Super-Adiabatic Particle Number: de Sitter space cosmological particle production: particle number in an expanding/contracting universe I particle production in 4 dimensional spacetime (Mottola) I particle production in even dimensional dS spacetime, but no particle production in odd dimensional dS spacetime (Bousso et al) question: physical reason for this difference ? Super-Adiabatic Particle Number: 4d de Sitter space 0.000025 0.00015 0.00002 0.00010 0.000015 0.00001 0.00005 5. ´ 10-6 0.00000 -15 -10 -5 0 5 10 15 0 -15 -10 -5 t 5 10 15 5 10 15 5 10 15 t 0.000025 0.000025 0.00002 0.00002 0.000015 0.000015 0.00001 0.00001 5. ´ 10-6 5. ´ 10-6 0 -15 0 -10 -5 0 5 10 15 0 -15 -10 -5 t 0 t 0.000025 0.00004 0.00002 0.00003 0.000015 0.00001 0.00002 5. ´ 10-6 0.00001 0 -15 -10 -5 0 t 5 10 15 0 -15 -10 -5 0 t cf. two-pulse coherent-constructive Schwinger effect Super-Adiabatic Particle Number: 3d de Sitter space 0.00012 0.00010 6. ´ 10-6 0.00008 4. ´ 10-6 0.00006 0.00004 2. ´ 10-6 0.00002 0.00000 -15 -10 -5 0 5 10 15 0 -15 -10 -5 6. ´ 10-6 6. ´ 10-6 4. ´ 10-6 4. ´ 10-6 -6 2. ´ 10-6 2. ´ 10 0 -15 -10 -5 0 0 5 10 15 5 10 15 5 10 15 t t 5 10 15 0 -15 -10 -5 t 0 t 0.000025 6. ´ 10-6 0.00002 0.000015 4. ´ 10-6 0.00001 2. ´ 10-6 0 -15 5. ´ 10-6 -10 -5 0 t 5 10 15 0 -15 -10 -5 0 t cf. two-pulse coherent-destructive Schwinger effect Conclusions I adiabatic particle number is basis dependent at non-asymptotic times I preferred super-adiabatic basis: optimal truncation of adiabatic expansion I super-adiabatic particle number is smooth across “particle creation events” I super-adiabatic particle number reveals quantum interference I difference between dS3 and dS4 is quantum interference I future: implications for back-reaction and quantum noise I future: analogue systems: time-dependent Bogoliubov transformation problems