Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Differentiation of Trigonometric Functions MODULE - V Calculus 22 Notes DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has made itself indispensable for other branches of higher Mathematics may it be calculus, vectors, three dimensional geometry, functions-harmonic and simple and otherwise just cannot be processed without encountering trigonometric functions. Further within the specific limit, trigonometric functions give us the inverses as well. The question now arises : Are all the rules of finding the derivatives studied by us so far appliacable to trigonometric functions ? This is what we propose to explore in this lesson and in the process, develop the formulae or results for finding the derivatives of trigonometric functions and their inverses . In all discussions involving the trignometric functions and their inverses, radian measure is used, unless otherwise specifically mentioned. . OBJECTIVES After studying this lesson, you will be able to : l l l l find the derivative of trigonometric functions from first principle; find the derivative of inverse trigonometric functions from first principle; apply product, quotient and chain rule in finding derivatives of trigonometric and inverse trigonometric functions; and find second order derivative of a function. EXPECTED BACKGROUND KNOWLEDGE l l Knowledge of trigonometric ratios as functions of angles. Standard limits of trigonometric functions namely. sinx tanx = 1 (iii) limcosx = 1 (iv) lim =1 x→ 0 x x→ 0 x x→ 0 (i) limsinx = 0 (ii) lim x→ 0 l Definition of derivative, and rules of finding derivatives of function. MATHEMATICS 251 Differentiation of Trigonometric Functions MODULE - V 22.1 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS Calculus FROM FIRST PRINCIPLE (i) Let y = sin x For a small increment δx in x, let the corresponding increment in y be δy . Notes y + δy = sin(x + δx) ∴ δy = sin(x + δx) − sinx and δx δx = 2cos x + sin 2 2 C+D C −D sinC − sinD = 2cos 2 sin 2 δx sin δy δ x 2 = 2cos x + δx 2 δx ∴ δx sin δy δx 2 lim = lim cos x + ⋅ lim 2 δx→0 δx = cosx.1 δx →0 δx δx→ 0 2 Thus, i.e., (ii) Let sin δx 2 Q lim δx = 1 δ x →0 2 dy = cosx dx d (sinx) = cosx dx y = cos x For a small increment δx in x, let the corresponding increment in y be δy . ∴ and y + δy = cos(x + δx) δy = cos(x + δx) − cosx δx δx = −2sin x + sin 2 2 ∴ δx sin δy δx 2 = −2sin x + ⋅ δx 2 δx δx sin δy dx 2 lim = − lim sin x + ⋅ lim δ x 2 δx→ 0 δx →0 δx δ x→ 0 2 = − sinx ⋅1 Thus, 252 dy = − sinx dx MATHEMATICS Differentiation of Trigonometric Functions (iii) MODULE - V Calculus d ( cosx ) = − sinx dx i.e., Let y = tan x For a small increament δx in x, let the corresponding increament in y be δy . y + δy = tan(x + x) δ ∴ Notes δy = tan(x + δx) −tanx and = sin(x + δx) sinx − cos(x + δx) cosx = sin(x + δx) ⋅ cosx − sinx.cos(x + δx) cos(x + δx)cosx = sin[(x + δx) − x ] cos(x + δx)cosx = sin δx cos(x + δx) ⋅ cosx δy sin δ x 1 = ⋅ δx δ x cos(x + δx)cosx ∴ δy sin δ x 1 = lim ⋅ lim δx→ 0 δx δ x→ 0 δ x δ x→ 0 cos(x + δx)cosx lim or = 1⋅ 1 2 cos x sin δx = 1 Q δlim x →0 δx = sec2 x Thus, dy = sec2 x dx i.e. d (tanx) = sec2 x dx (iv) Let y = sec x For a small increament δx in x, let the corresponding increament in y be δy . ∴ and y + δy = sec(x + δx) δy = sec(x + δx) − secx 1 1 = cos(x + δx) − cosx = cosx − cos(x + δx) cos(x + δx)cosx δx δx 2sin x + sin 2 2 = cos(x + δ x)cosx MATHEMATICS 253 Differentiation of Trigonometric Functions MODULE - V Calculus δx sin x + sin δx δy 2 2 lim = lim δx →0 δx δ x→ 0 cos(x + δx)cosx δx 2 δx δx sin x + sin δy 2 2 lim = lim lim δ x δx →0 δx δx→ 0 cos(x + δx)cosx δx →0 2 Notes = = Thus, i.e. sinx cos 2 x ⋅1 sinx 1 ⋅ = tanx.secx cosx cosx dy = secx.tanx dx d (secx) = secx ⋅ tanx dx Similarly, we can show that d (cotx) = − cosec2 x dx and d (cosec x ) = − cosec x ⋅ cot x dx Example 22.1 Find the derivative of cotx2 from first principle. Solution : y = cotx2 For a small increament δx in x, let the corresponding increament in y be δy . ∴ and y + δy = cot(x + δx)2 δy = cot(x + δx) 2 − c o t x2 = = = = 254 cos(x + δx)2 sin(x + δx)2 − cosx2 sinx2 cos(x + δx) 2 sinx 2 − cosx 2 sin(x + δx) 2 sin(x + δx)2 sinx2 sin[x 2 − (x + δx)2 ] sin(x + δx)2 sinx2 sin[−2xδx − (δ x) 2 ] sin(x + δx)2 sinx 2 MATHEMATICS Differentiation of Trigonometric Functions = MODULE - V Calculus − sin[(2x + δ x)δx] sin(x + δx)2 sinx2 δy − sin[(2x + δx)δx] = δx δxsin(x + δx )2 sinx2 ∴ δy sin[(2x + δx) δx] 2x + δx = − lim lim δx →0 δx δ x→ 0 δ x(2x + δx) δ x→ 0 sin(x + δx)2 sinx2 lim and 2x dy = −1 ⋅ 2 dx sinx .sinx2 or = −2x 2 2 (sinx ) = Notes sin[(2x + δx) δx] = 1 Q δlim x →0 δx(2x + δx) −2x sin 2 x 2 = −2x.cosec2 x 2 d (cotx 2 ) = −2x ⋅ cosec2 x 2 dx Hence Example 22.2 Find the derivative of cosecx from first principle. Solution : Let y = cosecx y + δ y = cosec(x + δx) and cosec(x + δx) − cosecx cosec(x + δx ) + cosec x δy = cosec(x + δx) + cosecx ∴ = cosec(x + δx) − cosecx cosec(x + δx) + cosecx = 1 1 − sin(x + δx) s i n x cosec(x + δx) + cosecx = sinx − sin(x + δx) cosec(x + δx) + cosecx [ sin ( x + xδ) sinx] δx δx 2cos x + sin 2 2 = − [ cosec(x + δ x) + cosecx sin ( ) ( x + xδ)sinx] δy = − lim δx →0 δx δx→ 0 lim or MATHEMATICS δx sin δx / 2 cos x + 2 δx / 2 × cosec(x + δ x) + cosecx] [sin(x + δx).sinx] dy − cosx = dx (2 (cosecx)(sinx)2 255 Differentiation of Trigonometric Functions MODULE - V Calculus 1 − 1 = − (cosecx) 2 (cosec x c o t x ) 2 Thus, Notes d dx ( ) 1 1 − cosecx = − ( cosecx ) 2 ( cosecxcotx) 2 Example 22.3 Find the derivative of sec2 x from first principle. Solution : Let y = sec 2 x y + δy = sec 2 (x + δx) and δy = sec 2 (x + δ x) − sec 2 x then, = = = cos 2 x − cos2 (x + δx) cos 2 (x + δx)cos 2 x sin[(x + δ x + x]sin[(x + δx − x)] cos2 (x + δx)cos2 x sin(2x + δx)sin δx cos 2 (x + δx)cos 2 x δy sin(2x + δx)sin δx = δx cos2 (x + δx)cos2 x.δx lim Now, δy δx →0 δx = lim sin(2x + δx)sin δx δx→0 cos 2 (x + δx)cos2 x.δx dy sin2x = 2 dx cos xcos2 x = 2sinxcosx 2 2 cos xcos x = 2tanx.sec 2 x = 2secx(sec x.tanx) = 2sec x (sec x tan x) CHECK YOUR PROGRESS 22.1 1. 2. Find the derivative from first principle of the following functions with respect to x : (a) cosec x (b) cot x (c) cos 2 x (d) cot 2 x (e) c o s e c x2 (f) s i n x Find the derivative of each of the following functions : (a) 2sin 2 x 256 (b) cosec2 x (c) tan 2 x MATHEMATICS Differentiation of Trigonometric Functions MODULE - V Calculus 22.2 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS You have learnt how we can find the derivative of a trigonometric function from first principle and also how to deal with these functions as a function of a function as shown in the alternative method. Now we consider some more examples of these derivatives. Example 22.4 Find the derivative of each of the following functions : (i) sin 2 x (ii) tan x Solution : (i) Let (iii) cosec(5x 3 ) y = sin 2 x, = sin t, where t = 2 x dy = cost dt By chain Rule, Notes and dt =2 dx dy dy dt = ⋅ , we have dx dt dx dy = cos t (2) = 2. cos t = 2 cos 2 x dx Hence, d (sin2x) = 2cos2x dx (ii) Let y = tan x = tan t where t = x dy = sec2 t and dt ∴ dt 1 = dx 2 x dy dy dt = ⋅ , we have dx dt dx By chain rule, 1 dy sec2 x = sec 2 t ⋅ = 2 x dx 2 x d ( sec 2 x tan x ) = dx 2 x Hence, Alternatively : Let y = tan x dy d sec2 x = sec2 x x = dx dx 2 x (iii) Let y = cosec(5x 3 ) dy d = − cosec(5x 3 )cot(5x 3 ) ⋅ [5x 3 ] dx dx ∴ = −15x 2 cosec(5x 3 )cot(5x 3 ) or you may solve it by substituting t = 5x 3 MATHEMATICS 257 Differentiation of Trigonometric Functions MODULE - V Calculus Example 22.5 Find the derivative of each of the following functions : sinx (ii) y = 1 + cosx (i) y = x 4 sin2x Solution : Notes (i) ∴ y = x 4 sin2x dy d d = x 4 (sin2x) + sin2x (x 4 ) dx dx dx (Using product rule) = x 4 (2cos2x) + sin2x(4x 3 ) = 2x 4 cos2x + 4x 3 sin2x = 2x 3[xcos2x + 2sin2x] (ii) y= = sinx 1 + cosx x x cos 2 2 2x 2cos 2 2sin = tan ∴ x 2 dy x d x 1 x = sec 2 ⋅ = sec2 dx 2 dx 2 2 2 Alternatively : You may find the derivative by using quotient rule Let y= ∴ dy = dx sin x 1 + cos x (1 + cosx) = = = = = 258 d d (sinx) − sin x (1 + cos x ) dx dx (1 + cos x ) 2 (1 + cosx)(cosx) − sin x ( − sin x ) (1 + cos x ) 2 cosx + cos 2 x + sin 2 x (1 + cos x)2 cosx + 1 (1 + cos x ) 2 1 (1 + cos x ) 1 x 2cos 2 2 1 x = sec2 2 2 MATHEMATICS Differentiation of Trigonometric Functions Example 22.6 Find the derivative of each of the following functions w.r.t. x : (i) cos2 x MODULE - V Calculus (ii) sin 3 x Solution : (i) Let y = cos 2 x = t2 where t = cos x dy = 2t dt ∴ Notes dt = − sin x dx and Using chain rule dy dy dt = ⋅ , we have dx dt dx dy = 2 cos x. ( − sinx) dx = −2cosxsinx = − sin2x y = sin 3 x (ii) Let dy 1 d = (sin 3 x)−1 / 2 ⋅ (sin 3 x) dx 2 dx ∴ 1 = 3 ⋅ 3sin 2 x ⋅ cosx 2 sin x = 3 sin x cos x 2 d 3 3 sin x cos x sin x = 2 dx Thus, Example 22.7 Find y= (i) dy , when dx 1 − sin x 1 + sin x (ii) y = a(1 − cost),x = a(t + sint) Solution : We have, (i) ∴ y= 1 − sin x 1 + sin x dy 1 1 − sin = dx 2 1+ sin MATHEMATICS x x − 1 2 ⋅ d 1 − sinx dx 1+ sinx 259 Differentiation of Trigonometric Functions MODULE - V Calculus Notes = 1 1 + sin x ( − cosx)(1 + sinx) − (1 − sinx)(cosx) ⋅ 2 1 − sin x (1 + sinx)2 = 1 1 + sin x −2cosx ⋅ 2 1 − sin x (1 + sinx)2 =− =− Thus, dy/dx = − 1 + sinx 1 − sin 2 x ⋅ 1 − sinx (1 + sinx) 2 1 + sinx 1 + sinx (1 + sinx) 2 = −1 1 + sinx 1 1 + sinx Alternatively, it is more convenient to find the derivative of such square root function by rationalising the denominator. 1 − sinx 1 − sinx × 1 + sinx 1 − sinx y= = = 1 − sinx 1 − sin 2 x 1 − sinx cos x = secx − tanx ∴ dy sin x 1 = sec x t a n x − sec2 x = − 2 dx cos x cos2 x = (ii) ∴ sin x − 1 1 − sin x 2 =− 1 1 + sin x x = a(t + sint), y = a(1 − cost) dx = a(1 + cost), dt Using chain rule, dy = a(sint) dt dy dy dt = ⋅ , we have dx dt dx dy a(sint) = dx a(1 + cost) = 260 t t cos 2 2 t = tan t 2 2cos 2 2 2sin MATHEMATICS Differentiation of Trigonometric Functions Find the derivative of each of the following functions at the indicated points : MODULE - V Example 22.8 (i) y = sin2x + (2x − 5) (ii) y = cotx + sec 2 x + 5 2 Calculus π at x = 2 at x = π / 6 Solution : Notes y = sin2x + (2x − 5) 2 (i) dy d d = cos2x (2x) + 2(2x − 5) (2x − 5) dx dx dx = 2cos2x + 4(2x − 5) ∴ At x = π , 2 dy = 2cos π + 4( π − 5) dx = −2 + 4π − 20 = 4π − 22 y = cotx + sec 2 x + 5 (ii) dy = − cosec 2 x + 2secx(secxtanx) dx ∴ = − cosec 2 x + 2sec2 xtanx At x = π , 6 dy π π π = − cosec 2 + 2sec 2 tan dx 6 6 6 = −4 + 2 ⋅ 4 1 3 3 8 = −4 + 3 3 Example 22.9 If sin y = x sin (a+y), prove that 2 dy sin (a + y ) = dx sina Solution : It is given that sin y = x sin (a+y) or x= siny sin(a + y) .....(1) Differentiating w.r.t. x on both sides of (1) we get sin(a + y)cosy − sinycos(a + y) dy 1= sin 2 (a + y) dx or MATHEMATICS sin(a + y −y) dy 1= 2 sin (a + y) dx 261 Differentiation of Trigonometric Functions 2 dy sin (a + y ) = dx sina MODULE - V or Calculus Example 22.10 If y = sinx + sinx + ....to infinity , dy cosx = dx 2y − 1 prove that Notes Solution : We are given that y = sinx + sinx + ...toinfinity y = sin x + y or y 2 = sinx + y or Differentiating with respect to x , we get 2y dy dy = cosx + dx dx (2y − 1) or dy = cosx dx dy cosx = dx 2y − 1 Thus, CHECK YOUR PROGRESS 22.2 1. 2. Find the derivative of each of the following functions w.r.t x : (a) y = 3sin4x (b) y = cos5x (c) y = tan x (d) y = sin x (e) y = sinx2 (f) y = 2 tan2x (g) y = π cot3x (h) y = sec10x (i) y = cosec2x Find the derivative of each of the following functions : (a) f(x) = secx − 1 secx + 1 ( (b) f(x) = sinx + cosx sinx − cosx ) 2 (d) f(x) = 1 + x cosx (e) f(x) = x cosecx (c) f(x) = x sinx (f) f(x) = sin2xcos3x (g) f(x) = sin3x 3. 262 Find the derivative of each of the following functions : (a) y = sin3 x (b) y = cos 2 x (c) y = tan 4 x (d) y = cot 4 x (e) y = sec5 x (f) y = cosec 3 x (g) y = sec x (h) y= secx + tanx secx − tanx MATHEMATICS Differentiation of Trigonometric Functions 4. (a) 5. MODULE - V Calculus Find the derivative of the following functions at the indicated points : π y = cos(2x + π/ 2),x = 3 y= (b) 1+ s i n x π ,x = cosx 4 If y = tanx + tanx + tanx + ..., to infinity dy = sec 2 x . dx If cosy = xcos(a + y), Notes Show that (2y − 1) 6. prove that dy cos2 (a + y) = . dx sina 22.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS FROM FIRST PRINCIPLE We now find derivatives of standard inverse trignometric functions sin −1 x, cos− 1 x, tan −1 x, by first principle. (i) We will show that by first principle the derivative of sin −1 x w.r.t. x is given by d (sin − 1 x) = dx 1 (1 − x 2 ) Let y = sin −1 x . Then x = sin y and so x + δx = sin(y + δy) As δx → 0, δy → 0 . Now, δx = sin(y + δy) − sin y ∴ 1= sin(y + δy) − s i n y δx or 1= sin(y + δy) − sin y δy ⋅ δy δx ∴ 1 = lim [On dividing both sides by δx ] sin(y + δy) − siny δy ⋅ lim δ y→0 δy δx →0 δx [Q δ y → 0 when δx → 0] 1 1 2cos y + δ y sin δ y 2 2 ⋅ dy = lim δ y→ 0 δy dx dy = ( cosy) ⋅ dx dy 1 1 = = dx cos y 1 − sin 2 y ( MATHEMATICS = 1 ) (1 − x 2 ) 263 Differentiation of Trigonometric Functions MODULE - V Calculus ∴ d ( −1 ) sin x = dx (1 − x 2 ) ( ) d 1 cos −1 x = − dx 1 − x2 (ii) Notes 1 ( ) ⋅ For proof proceed exactly as in the case of sin −1 x . (iii) Now we show that, ( ) d 1 tan − 1 x = dx 1 + x2 Let y = tan −1 x .Then x = tany and so x + δx = tan(y + δy) As δx → 0, also δy → 0 Now, δx = tan(y + δy) − t a n y tan(y + δy) − tany δy ⋅ ⋅ δy δx ∴ 1= ∴ 1 = lim tan(y + δy) − tany δy ⋅ lim δ y→ 0 δy δx →0 δx [Qδ y → 0 when δx → 0 ] dy sin(y + δy) siny = lim − δy ⋅ δy→0 cos(y + δy) cosy dx (iv) dy sin(y + δ y)cosy − cos(y + δy)siny ⋅ lim dx δy →0 δy.cos(y + δy)cosy = dy sin(y + δy − y) ⋅ lim dx δy →0 δy.cos(y + δy)cosy = dy sin δy 1 ⋅ lim ⋅ dx δy →0 δy cos(y + δy)cosy = dy 1 dy ⋅ 2 = ⋅ sec 2 y dx cos y dx dy 1 1 1 = = = 2 2 dx sec y 1 + tan y 1 +x 2 ∴ ∴ = ⋅ d ( −1 ) 1 tan x = dx 1+ x2 ( ) d 1 cot − 1 x = − dx 1 + x2 For proof proceed exactly as in the case of tan −1 x . 264 MATHEMATICS Differentiation of Trigonometric Functions (v) d (sec− 1 x) = We have by first principle dx x 1 (x 2 − 1 ) MODULE - V Calculus Let y = sec − 1 x . Then x = sec y and so x + δx = sec(y + δy). As δx → 0,also δy → 0 . Notes δx = sec(y + δy ) − secy. Now sec(y + δy) − secy δy ⋅ ⋅ δy δx 1= ∴ sec(y + δ y) − secy δy ⋅ lim δy δx →0 δx 1 = lim δ y→ 0 dy = ⋅ lim dx δy →0 [Qδ y → 0 when δx → 0 ] 1 1 2sin y + δy sin δy 2 2 δy.cosycos ( y + δy ) 1 1 sin y + δy sin δy dy 2 2 = ⋅ lim ⋅ 1 dx δ y→0 cosycos ( y + δy ) δy 2 dy siny dy = dx ⋅ cosycosy = dx ⋅ secytany dy 1 = = dx secytany secy ∴ (sec2 y − 1) 1 = x ( x2 − 1) d ( −1 ) 1 = sec x = dx x x 2 −1 ∴ (vi) 1 ( ) d cosec − 1x = dx x 1 ( x − 1) . 2 For proof proceed as in the case of sec−1 x. Example 22.11 Find derivative of sin − 1 ( x 2 ) from first principle. Solution : y = sin −1 x 2 Let x2 = s i n y ∴ ( x + δx )2 = sin(y + δy) Now, ( x + δx )2 − x 2 δx MATHEMATICS = sin ( y + δy ) − siny δx 265 Differentiation of Trigonometric Functions MODULE - V Calculus lim δx →0 δy 2cos y + sin δy 2 2 ⋅ lim δy = lim δy δx→0 δx (x + δx) − x δy ←0 2 2 ( x + δx )2 − x 2 dy dx ⇒ 2x = cosy⋅ ⇒ dy 2x 2x 2x = = = . dx cosy 1 − sin 2 y 1− x 4 Notes Example 22.12 Find derivative of sin −1 x w.r.t. x by delta method. Solution : Let y = sin −1 x ⇒ siny = x ..(1) Also sin(y + δy) = x + δx From (1) and (2), we get ..(2) sin(y + δy) − siny = x + δx − x or δy δy 2cos y + sin = 2 2 = ∴ δ y δ y 2cos y + sin 2 2 = δx x + δ x− x δx x + δ x+ ∴ ∴ 1 x + δx + x dy 1 cosy= or dx 2 x ) 1 x + δx + x δy δy lim ⋅ lim cos y + ⋅ lim δ x →0 δ x δ y →0 2 δ y→ 0 or x + δ x+ x x or δ x →0 )( x + δx + x δy sin δy δy 2= ⋅ cos y + ⋅ δy δx 2 2 = lim 266 ( 1 x + δx + x δy sin 2 δy 2 (Q δ y → 0 as δ x → 0) dy 1 1 1 = = = dx 2 x cosy 2 x 1− sin 2 y 2 x 1− x dy 1 = dx 2 x 1 − x MATHEMATICS Differentiation of Trigonometric Functions MODULE - V Calculus CHECK YOUR PROGRESS 22.3 1. Find by first principle that derivative of each of the following : (i) cos−1 x2 (ii) cos− 1 x x −1 (iv) tan −1 x 2 (v) tan x x (iii) cos−1 x Notes (vi) tan −1 x 22.4 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS In the previous section, we have learnt to find derivatives of inverse trignometric functions by first principle. Now we learn to find derivatives of inverse trigonometric functions by alternative methods. We start with standard inverse trignometric functions sin − 1 x,cos−1 x,.... −1 (i) Derivative of sin x Solution : Let y = sin −1 x x = sin y ∴ Differentiating w.r.t. y (i) dx = cosy dy ∴ dx = 1 − sin 2 y dy or 1 1 = dx 1 − sin 2 y dy ∴ dy 1 1 = = 2 dx 1 − sin y 1 − x2 Hence, ...[Using (i) ] dy 1 Q dx = dx dy d 1 [sin − 1 x] = dx 1− x2 Similarly we can show that d −1 [cos−1 x] = dx 1 − x2 (ii) Derivative of tan −1 x Solution : Let tan − 1 x = y ∴ x = tany dx 2 Differentiating w.r.t. y, dy = sec y MATHEMATICS 267 Differentiation of Trigonometric Functions MODULE - V and Calculus dy 1 = dx sec 2 y = = Notes ( ) ( ) 1 [Q We have written tan y in terms of x] 1 + tan 2 y 1 1+ x2 Hence, d 1 tan − 1 x = dx 1+ x2 Similarly, d −1 cot −1 x = . dx 1 + x2 (iii) Derivative of sec−1 x Solution : Let sec −1 x = y dx = secytany dy ∴ x = sec y and ∴ dy 1 = dx sec y tan y = = = 1 sec y [ ± sec 2 y − 1] 1 ± sec y sec 2 y − 1 1 | x | sec 2 y − 1 π 2 Note : (i) When x >1, sec y is + ve and tan y is + ve, y ∈ 0, π 2 (ii) When x < −1, sec y is −ve and tan y is −ve, y ∈ , π Hence, d 1 (sec− 1 x) = dx | x | x2 − 1 Similarly d −1 (cosec−1x) = dx | x | x2 − 1 Example 22.13 Find the derivative of each of the following : (i) sin −1 x (ii) cos−1 x2 (iii) (cosec − 1x)2 Solution : (i) 268 Let y = sin −1 x MATHEMATICS Differentiation of Trigonometric Functions dy = dx ∴ 1 1− ( ) x 2 d dx MODULE - V Calculus ( ) x 1 1 ⋅ x −1 / 2 1− x 2 = Notes 1 = 2 x 1− x d 1 sin − 1 x = dx 2 x 1− x ∴ (ii) Let y = cos −1 x 2 dy −1 d = ⋅ (x 2 ) dx 1 − (x 2 )2 dx = −1 1 − x4 ⋅ (2x) d ( −1 2 ) −2x cos x = dx 1 − x4 ∴ (iii) Let y = (cosec −1x) 2 ( dy d = 2(cosec−1x) ⋅ cosec− 1x dx dx = 2(cosec− 1x) ⋅ = ) −1 | x | x 2 −1 −2cosec − 1x | x | x2 − 1 d −2cosec − 1x (cosec− 1x)2 = dx | x | x2 − 1 ∴ Example 22.14 Find the derivative of each of the following : (i) tan −1 cosx 1 + sinx (ii) sin(2sin −1 x) Solution : Let (i) y = tan−1 cosx 1 + sinx π sin − x 2 = tan π 1 + cos −x 2 −1 MATHEMATICS 269 Differentiation of Trigonometric Functions MODULE - V Calculus π x = tan −1 tan − 4 2 = ∴ Notes π x − 4 2 dy = −1/2 dx (ii) y = sin(2sin −1 x) Let y = sin(2sin −1 x) ∴ dy d = cos(2sin −1 x) ⋅ (2sin −1x) dx dx ∴ dy 2 = cos(2sin −1 x) ⋅ dx 1 − x2 = 2cos(2sin −1 x) 1− x2 −1 Example 22.15 Show that the derivative of tan Solution : Let y = tan −1 2x 1− x Let x = tan θ ∴ y = tan−1 2 and z = sin−1 2tan θ 2 1 − tan θ 2x 1− x 2 w.r.t sin −1 2x 1 + x2 is 1. 2x 1 + x2 and z = sin −1 2tan θ 1 + tan 2 θ = tan −1 (tan2θ) and z = sin − 1(sin2 θ) = 2θ and dy =2 dθ and z = 2θ dz =2 dθ dy dy d θ 1 = ⋅ = 2 ⋅ =1 dx dθ dz 2 (By chain rule) CHECK YOUR PROGRESS 22.4 Find the derivative of each of the following functions w.r.t. x and express the result in the simplest form (1-3) : 270 x 2 1. (a) sin −1 x 2 (b) cos −1 (c) cos −1 2. (a) tan −1 (cosecx − cotx) (b) cot −1 (secx + tanx) (c) tan 1 x −1 cosx − sinx cosx + sinx MATHEMATICS Differentiation of Trigonometric Functions 3. 4. (a) sin(cos− 1 x) (b) sec(tan − 1 x) (d) cos− 1(4x 3 − 3x) (e) cot −1 1 + x 2 + x MODULE - V Calculus (c) sin − 1(1 − 2x 2 ) Find the derivative of : tan −1 x 1 + tan −1 x w.r.t. tan −1 x . Notes 22.5 SECOND ORDER DERIVATIVES We know that the second order derivative of a function is the derivative of the first derivative of that function. In this section, we shall find the second order derivatives of trigonometric and inverse trigonometric functions. In the process, we shall be using product rule, quotient rule and chain rule. Let us take some examples. Example 22.16 Find the second order derivative of (i) s i n x (ii) xcosx (iii) cos−1 x Solution : (i) Let y = sin x Differentiating w.r.t. x both sides, we get dy = cosx dx Differentiating w.r.t x both sides again, we get d2 y dx ∴ 2 d2 y dx 2 = d (cosx) = − sinx dx = − sinx (ii) Let y = x cos x Differentiating w.r.t. x both sides, we get dy = x( − sinx) + cosx.1 dx dy = − xsinx + cosx dx Differentiating w.r.t. x both sides again, we get d2 y dx 2 = d ( − xsinx + cosx ) dx = − ( x.cosx + sinx ) − sinx = − x.cosx − 2sinx ∴ MATHEMATICS d2 y dx 2 = − ( x.cosx + 2sinx) 271 Differentiation of Trigonometric Functions MODULE - V (iii) Let y = cos−1 x Calculus Differentiating w.r.t. x both sides, we get ( dy −1 −1 = = = − 1 − x2 1 / 2 dx 1 − x2 1 − x2 ( Notes ) ) − 1 2 Differentiating w.r.t. x both sides, we get ( d2 y −1 = − ⋅ 1 − x2 2 dx 2 =− d2 y ∴ dx 2 = ) −3 / 2 ⋅ ( −2x ) x (1 − x 2 ) 3/2 −x (1 − x2 ) 3/2 ( ) 2 Example 22.17 If y = sin −1 x , show that 1 − x y 2 − xy1 = 0 , where y 2 and y1 respectively denote the second and first, order derivatives of y w.r.t. x. Solution : We have, y = sin −1 x Differentiating w.r.t. x both sides, we get dy 1 = dx 1 − x2 2 or or 1 dy dx = 1 − x2 (squaring both sides) (1 − x2 ) y12 = 0 Differentiating w.r.t. x both sides, we get or or (1 − x 2 ) ⋅ 2y1 dxd ( y1 ) + ( −2x )⋅ y12 = 0 (1 − x 2 ) ⋅ 2y1y2 − 2 x y12 = 0 (1 − x2 ) y2 − x y1 = 0 CHECK YOUR PROGRESS 22.5 1. 272 Find the second order derivative of each of the following : (a) sin(cosx) (b) x 2 tan −1 x MATHEMATICS Differentiation of Trigonometric Functions 2. If y = ( 1 sin − 1 x 2 ) 2 ( MODULE - V Calculus ) 2 , show that 1 − x y2 − xy1 = 1 . d2 y + tanx 3. If y = sin(sinx) , prove that 4. 2 If y = x + tanx, show that cos x dx 2 d2 y dx 2 dy + ycos2 x = 0 . dx − 2y + 2x = 0 Notes LET US SUM UP ● ● ● ● (i) d (sinx) = cosx dx (ii) d (cosx) = − sinx dx (iii) d (tanx) = sec2 x dx (iv) d (cotx) = − cosec2 x dx (v) d (secx) = secxtanx dx (vi) d (cosecx) = − cosecxcotx dx If u is a derivabale function of x, then (i) d du (sinu) = cosu dx dx (ii) d du (cosu) = − sinu dx dx (iii) d du (tanu) = sec2 u dx dx (iv) d du (cotu) = − cosec2 u dx dx (v) d du (secu) = secutanu dx dx (vi) d du (coseu) = −cosec u c o t u dx dx (i) d 1 (sin − 1 x) = dx 1 − x2 (ii) d −1 (cos− 1 x) = dx 1 − x2 (iii) d 1 (tan −1 x) = dx 1 + x2 (iv) d −1 (cot −1 x) = dx 1 + x2 (v) d 1 (sec− 1 x) = dx | x | x2 − 1 (vi) d −1 (cosec−1x) = dx | x | x2 − 1 If u is a derivable function of x, then (i) d 1 du (sin − 1 u) = ⋅ 2 dx 1 − u dx (ii) d −1 du (cos− 1 u) = ⋅ 2 dx 1 − u dx (iii) d 1 du (tan −1 u) = ⋅ 2 dx 1 + u dx (iv) d −1 du (cot −1 u) = ⋅ dx 1 + u 2 dx (v) d 1 du (sec− 1 u) = ⋅ (vi) dx | u | u 2 − 1 dx d −1 du (cosec− 1u) = ⋅ dx | u | u 2 − 1 dx The second order derivative of a trignometric function is the derivative of their first order derivatives. MATHEMATICS 273 Differentiation of Trigonometric Functions MODULE - V Calculus SUPPORTIVE WEB SITES l l http://www.wikipedia.org http://mathworld.wolfram.com Notes TERMINAL EXERCISE x dy , find . 2 dx 1. If y = x 3 tan2 2. Evaluate, 3. If y = 4. If y = sec −1 5. If x = acos3 θ, y = asin 3 θ , then find 1 + 6. If y = x + x + x + .... , find . dx 7. Find the derivative of sin −1 x w.r.t. cos− 1 1 − x 2 8. If y = cos(cosx) , prove that d π sin 4 x + cos 4 x at x = and 0. dx 2 5x 3 (1 − x) + cos2 (2x + 1) , find dy . dx dy x +1 x −1 + sin −1 , then show that =0 dx x −1 x +1 2 dy . dx dy d2 y dx 9. 2 2 − cotx ⋅ dy + y.sin 2 x = 0 . dx If y = tan −1 x show that (1 + x)2 y 2 + 2xy1 = 0 . 10. If y = (cos −1 x )2 , show that (1 − x 2 )y 2 − xy1 − 2 = 0 . 274 MATHEMATICS Differentiation of Trigonometric Functions MODULE - V Calculus ANSWERS CHECK YOUR PROGRESS 22.1 (1) 2. (a) − cosec x c o t x (b) − cosec 2 x (d) −2cosec2 2x (e) −2xcosecx 2 c o t x2 (f) (a) 2sin2x (b) −2cosec 2 x c o t x (c) −2sin2x Notes cosx 2 sinx (c) 2tanxsec 2 x CHECK YOUR PROGRESS 22.2 1. 2. sec 2 x 2 x (a) 12cos4x (b) −5 s i n 5 x (c) (e) 2 x c o s x2 (f) 2 2 sec2 2x (g) − 3π cosec2 3x (h) 10sec10xtan10x (i) −2cosec2xcot2x (a) 2secxtanx 2 (secx + 1) (b) −2 (d) cos x 2 x (c) xcosx + sinx (sinx − cosx)2 (d) 2xcosx − (1 + x 2 )sinx (e) cosecx(1 − xcotx) (f) 2cos2xcos3x − 3 s i n 2 x s i n 3 x 3. (a) 3sin 2 xcosx (b) − sin2x (e) 5sec 5 x t a n x (f) −3cosec3x cotx (g) 3cos3x 2 sin3x (d) −4cot 3 xcosec 2 x (c) 4tan 3 xsec2 x (g) sec x tan x 2 x 4. (h) secx (secx + tanx) (a) 1 (b) 2 + 2 CHECK YOUR PROGRESS 22.3 1. (i) (iv) −2x 1 − x4 2x 1+ x (ii) (v) 4 −1 x 1− x 2 1 x(1 + x 2 ) − − − cos− 1 x x (iii) 2 tan −1 x −1 1 2x 2 (vi) x2 (1 − x) 1 1 2x 2 (1 + x ) CHECK YOUR PROGRESS 22.4 2x 1. (a) 1− x MATHEMATICS 4 (b) −1 4−x 1 2 (c) x x2 − 1 275 Differentiation of Trigonometric Functions MODULE - V 2. Calculus 3. Notes (a) 1 2 (a) − (c) − (b) cos ( cos−1 x) (b) 1− x 2 −2 1− x (d) 2 x 1+ x 2 1 2 (c) −1 ⋅ sec ( tan −1 x ) −3 1− x (e) 2 −1 2(1 + x 2 ) 1 4. (1+ tan −1 x) 2 CHECK YOUR PROGRESS 22.5 1. − cosxcos(cosx) − sin 2 xsin(cosx) (a) 2x(2 + x 2 ) (b) 2 2 (1 + x ) + 2tan −1 x TERMINAL EXERCISE 1. 3. x x x x 3 tan sec2 + 3x 2 tan2 2 2 2 5(3 − x) 3(1 − 6. 276 5 x)3 1 2y − 1 − 2sin(4x + 2) 2. 0, 0 5. |sec θ | 1 7. 2 1− x 2 MATHEMATICS