Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
High-Speed Optical Transmission Systems Hochbitratige optische Übertragungssysteme von heute und morgen Prof. Dr.-Ing. Christian-Alexander Bunge Hochschule für Telekommunikation Leipzig [email protected] Local Area Network (LAN) mehrere 10m, ~1Gb/s Metronetz ~100km Vermittlungsstelle grauer Kasten Zugangsnetz ~1km, ~10Mb/s Hochbitratige optische Verbindungen Backbone >100km Backbone >100km Metronetz Backbone >100km Backbone >100km Metronetz Backbone >100km Backbone >100km Metronetz Überblick ‣ Einführung ‣ Übertragungssystem ‣ Konzepte ‣ Sender, Signalerzeugung ‣ Empfänger ‣ Direkt-Detektion vs. kohärent ‣ begrenzende Effekte, Degradationen ‣ Dispersion, Nichtlinearitäten ‣ Streckenauslegung Wochenübersicht 2014 vormittags 10:15h – 13:00h nachmittags 14:00h – 17:00h Mo Di Mi Do Fr VL Systeme VL Empfänger UE Sender UE Übertrag.Effekte VL Übertrag.Effekte VL Sender VPI/ Simulation – Einführung UE Empfänger Zeit zum Nacharbeiten / ReCap ZeitVL zum NachÜbertrag.arbeiten / Effekte ReCap zur Prüfung mündliche Prüfung 45 min pro Student möglichst Gruppenprüfung mit 2 oder max. 3 Studenten Terminabsprache ca. 2–3 Wochen vor dem Prüfungstermin Anmeldung bei mir: Christian-Alexander Bunge Hochschule f. Telekommunikation Leipzig Gustav-Freytag-Str. 43-45 04277 Leipzig Tel.: (0341) 306 22 41 E-Mail: [email protected] Organisatorisches... Vormittags (10h-13h): Vorlesung Christian-Alexander Bunge Hochschule f. Telekommunikation Leipzig, Gustav-Freytag-Str. 43-45, 04277 Leipzig, Tel.: (0341) 306 22 41, [email protected] Nachmittags (14h-17h): Simulationspraktikum/ Selbststudium Lilli Kuen HFT 516, [email protected] Organisatorisches... ‣ Allgemeine Informationen, Skript: ‣ http://www1.hft-leipzig.de/ice/bunge_de.html ‣ http://www.hft.tu-berlin.de ! ‣ Literaturempfehlungen ‣ Agrawal, G. P.: Fiber-Optic Communication Systems, John Wiley & Sons, 2008 ‣ Voges, Petermann: Optische Kommunikationstechnik, Springer-Verlag, 2002. Stand der Technik: Was ist möglich? 32 Tb/s (320x114 Gb/s) PMD-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber 461 tions using , where (a) recovery. ZHOU et al.: RZ-SHAPED PDM-8QAM MODULATION FORMAT by intr T tica tim pol me can U nol suc (32 coh bit/ T fro Lab Re Fig.et11. Experimental setup for 32 Tb/s -band transmission experiment. aus: X. Zhou al. „32 Tb/s (320x114Gb/s) PMD-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber,” J. of Lightw. Technol. Vol. 28, No. 4, Feb. 2010. Table 1: Some current spectral efficiency records at per-channel bit rates beyond 40 Gb/s. DQPSK: Differential quadrature phase shift keying; QAM: Quadrature amplitude modulation; OFDM: Orthogonal frequency-division multiplexing. 10x112-Gb/s PDM 16-QAM transmission over 630 km 2. Experimental Setup The fiber experimental system6.2-b/s/Hz is shown in Fig. 1. Ten lasers were operated on a 16.67-GHz grid in the C band between of with spectral efficiency 193.35 THz and 193.50 THz (1549.31 nm to 1550.51 nm). A tunable external-cavity laser (ECL) was used as the source for the respective WDM channel under test, due to the required narrow linewidth for 16-QAM. The measured linewidth of the ECL was ~100 kHz. The remaining lasers were distributed feedback (DFB) lasers with linewidths of about 2 MHz. Two transmitters were used, corresponding to odd and even channels on a 33.33-GHz © 2009 OSA/OF Log (Bit-Error Ratio) a2595_1.pdf PDPB8.pdf Theory 1 Ch. no Interleaver 1 Ch. w/ Interleaver WDM w/ Interleaver -2 y x x y y -3 -4 -5 -6 14 16 18 20 22 24 26 28 30 32 © 2009 OSA/OFC/NFOEC 2009 OSNR in 0.1 nm (dB) Fig. 1: Experimental setup. y x y 978-1-55752-869-8/09/$25.00 ©2009 IEEE x y Relative Power (dBm) Fig. 4: Bit-error-ratio results in back-to-back operation. Fig. 5: Signal constellations for both polarizations. Top left: Single channel without the interleaver (OSNR= 35 dB). Top right: Channel in WDM environment (OSNR=23 dB). Bottom: After transmission. -2 10 -10 -20 1 Bit-Error Ratio a2595_1.pdf PDPB8.pdf x x 2 ! 10-3 FEC Limit -3 10 -30 Downloaded on February 28,2010 at 17:24:15 EST from IEEE Xplore. Restrictions apply. Authorized licensed use limited to: Technische Universitaet Berlin. (0.1-nm resolution bandwidth) 193.30 193.35 193.40 193.45 193.50 193.55 Frequency (THz) -4 10 193.30 193.35 193.40 193.45 193.50 193.55 Frequency (THz) 7: Bit-error-ratio results after 630-km transmission. aus: A,. Gnauck et al. „ 10x112-Gb/s 16-QAM transmission over 630 km of fiber withFig.6.2-b/s/Hz spectral efficiency,” Fig. 5: Signal constellations for both polarizations. TopPDM left: Single channel without the interleaver (OSNR= 35 dB). Top right: Channel Optical Fiber Conference (OFCin2009), Post-Deadline Paper PDP8, San Diego, USA, 2009. -3 Fig. 6: Optical spectrum after 630-km transmission. 20.2 dB to achieve a BER of 1 ! 10 . This value is 3.2 dB off the theoretical limit for PDM 16-QAM (solid li Dämpfung und optische Fenster 100 Dämpfung [dB/km] 10 Gesamtdämpfung OH-Absorption 1 Rayleighstreuung 0,1 IR-Absorption UV-Absorption 0,01 600 800 1000 1200 1400 1600 Wellenlänge [nm] Entwicklung der optischen Übertragungsstrecken 1. Generation LED MMF MMF Reg. MMF Reg. MMF 50 Mb/s-100 Mb/s Reg. 10 km 2. Generation 1,3µm Laser SMF SMF Reg. SMF Reg. SMF 100 Mb/s-1,7 Gb/s Reg. 50 km 3. Generation 1,55µm Laser SMF SMF Reg. SMF 2,5 Gb/s-10 Gb/s Reg. ca. 100 km 4. Generation DFB-Laser λ2 Tx2 λn Txn Rx1 SMF EDFA SMF Rx2 …… Tx1 …… λ1 ca. 100 km Rxn 2,5 Gb/s-40 Gb/s pro Wellenlänge erreichte Übertragungslängen und -kapazitäten Kanaldatenrate Gesamtkapaz. Grundsätzlicher Aufbau einer Übertragungsstrecke Daten Sender Block Coding Empfänger Line Coding Line Coding Line Coding: Gleichstromanteil Anzahl Marks und Spaces Redundanz z B. differentielle Kodierung Block Coding: Fehler-Korrektur Redundanz Robustheit erhöhen z. B. FEC, Turbo-Kodes Block Coding Daten Aufbau einer optischen Übertragungsstrecke Modulator Sender TIA Signalverarbeitung Empfänger Demodulator DatenRückgewinnung Daten TaktRückgewinnung Takt Multiplex-Techniken Zeit-MUX Wellenlängen-MUX Zeitmultiplex (TDM-System) Kanal 1 t Kanal 2 t Kanal 3 t Kanal 4 t Kanäle 1, 2, 3 und 4 t ETDM- vs. ODTM-Sender AM 010.. ..110 010.. BitwortErzeugung ..110 AM 010.. BitwortErzeugung ..110 AM …… 010.. BitwortErzeugung ..110 …… optische Pulsquelle Δτ AM n⋅Δτ Verzögerungsleitungen ∑ ETDM- vs. ODTM-Sender 010.. BitwortErzeugung ..110 AM 010.. BitwortErzeugung ..110 AM …… 010.. BitwortErzeugung ..110 …… optische Pulsquelle Δτ AM n⋅Δτ AM Verzögerungsleitungen 010.. ..110 ∑ Wellenlängenmultiplex (WDM-System) λ1 Tx1 λ2 Tx2 Wellenlängenspektrum (a) λ1+λ2+…+λn …… λn Txn Prinzip (b) Aufteilung der Information: spektral vs zeitlich f f t TDM t (O)FDM (:A,6,*B+9C>7D<:--),-'E76+)F6,G)*B Frequenz-Multiplex, Sub-Carrier-Multiplexing 2/ #+,(()-./ 20 #/!!" 21 #/!!1 H !" #$%&'()* 3.&'4565)7 8 8 8 H #+,(()-.1 3.&'4565)7 #0!!1 !/.;"/< #=!!1 9:4'7,4*,(5%'44)* !0.;"0< 8 8 8 3.&'4565)7 8 8 8 3.&'4565)7 #=!!" !>=?@ H 9:4'7,4*,(5%'44)* 3.&'4565)7 3.&'4565)7 #0!!" 3.&'4565)7 #+,(()-.0 8 8 8 3.&'4565)7 8 8 8 3.&'4565)7 =13.&'4565)7 9:4'7,4*,(5%'44)* ! !=.;"=< !"!##$%&'()*+,-'#../&'0-123'43'53'%678,*+9:6 ;,<+7-,'=&'>6)?,'=@ Spektren bei FDM Illustration of OSSB modulation using dual-electrode MZ modulator. Fig. 2. HUI et al.: SCM FOR HIGH-SPEED OPTICAL TRANSMISSION Fig. 3. Measured OSSB spectrum with four subcarrier channels. shown in Fig. 2, in order to generate OSSB, the composite signal was applied to both of the two balanced electrodes with a phase shift in one of the arms using a 90 hybrid splitter. A direct Spektren bei OFDM f fT + n · f ... ... ⇥T fT = 2 f fn = N · f Spektren bei OFDM A(t) = Rect t t0 Tbit ⇥ t sin f · Tbit Ã(f ) = F{A(t)} ⇥ f · Tbit Ãges (f ) = i f f si · Ã(f ) · exp(⇧ · 2 fi ) Modulation DAC cos(2πfRFt) DAC Re I Bias elektrische + + Modulation sin(2πfRFt) Im × Optical Optical Modulator Filter Laser Q Carrier Loss-Compensated Fiber Link Equalization Demodulation × Splitter el. De-Re -sin(2πf t) Multiplex Q × Im ADC Photodiode RF Serial to Parallel I ADC cos(2πfRFt) elektrische Signalverarbeitung FFT Fig. 1. Optical OFDM system block diagram. N parallel Data Channels Zeros elektrische Inverse FFT Signalverarbeitung × Distortion Products Parallel to Serial N parallel Data Channels waveform containing a superposition of all of the sub-carriers. This waveform is modulated onto an RF-carrier, fRF, using an I-Q modulator, producing a real-valued waveform comprising a band of sub-carriers displaced from DC (see inset). Next, this band is modulated ontoOFDM-System: an optical carrier using aVorteil linear optical modulator. In contrast to our–earlier orthogonaler Signale FFTsystem [13], the output of the optical modulator is filtered to remove all frequencies other than the upper side-band (or lower sideband if preferred) and an attenuated (suppressed) optical carrier. Modulationsformate: wie Information kodiert wird 3.1 Overview In this chapter, the methods for the optical signal generation are introduced. The focus is set on modulation formats employing the amplitude modulation of the optical carrier, because of their importance in today’s optical transmission systems. The generation and transmission characteristics of conventional and novel modulation formats are presented. Systems High-Speed Optical Transmission – TU Berlin – Dr.-Ing. C.-A. Bunge SYS/ Modulationsformate ~ E(t) =~ e · A · e |[!0 t+'(t)] 3.2 Optical signal generation 6 Kanalkapazität nach Shannon ‣ Rb: Bitrate Rb = RS · RC log2 M ‣ RS: Symbolrate ‣ normalerweise RS≤B bei Vermeidung von Symbolinterferenz (Nyquist-Theor.) ‣ Rc: Redundanz ‣ Rc≤1, ohne Fehlerkorrektur Rc=1 ‣ M: Anzahl der Symbolzustände (binär, quaternär,...) Übertragungskapazität ‣ maximale Bitrate, die man übertragen kann ‣ Abhängig u.a. von: ‣ Leistung ‣ Bandbreite CKanal = B · log10 (1 + SNR) ‣ Rauschen ‣ Modulationsformat ‣ Multiplexing ‣ Spektrale Effizienz CKanal ES = ⌫ bit s · Hz Beispiele für Modulationsformate NRZ- vs. for a RZ pulse with a reduced duty cycle ( <0.3) an is an increased robustness to fiber nonlinearities cause the wider ones, enabling a fast reduction of the pulse p using OTDM-techniques [172]. The reduced pulse width RZ-Spektrum making this technique less interesting for the implemen 3.3 NRZ-based modulatio e⇥ciency (>0.4 bit/s/Hz). Figure 3.3: 40 Gb/s NRZ signal: a) optical spectrum b)40 signal and chirp Figure 3.7: Gb/sshape RZ signal: a) optica RZ-Formate im Vergleich NRZ RZ33 RZ50 RZ67 3.4 RZ-based modulation fo spectral width between the two first spectral side-bands amounts to 40 GHz. Compared to the RZ RZofCSRZ Duo-Binär (DB) 3.6a)Carrier-Suppressed a spectral reduction with a factor 2 occurs.und The CSRZ pulses possess a RZ signal shape ptical phase di⇥erence of between adjacent bits (Fig. 3.9b). This inter-pulse phase condition c ficial for an increased nonlinear tolerance [178]. Figure 3.9: 40 Gb/s CSRZ signal: a) optical spectrum b) signal shape and chirp Figure 3.5: 40 Gb/s duobinary signal: a) JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 10, OCTOBER 199 Ein- und Zwei-Seitenband-Modulation JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 10, OCTOBER 1999 Zwei-Seitenband (DSB) (a) (a) Ein-Seitenband (SSB) nsitivity versus MZ modulator bias angle for Gb/s over 400 km at a BER of 10 9 . D(B)PSK - DQPSK halbe Symbolrate bei gleicher Bitrate Konstellationsdiagramme (u) (u) 11 01 0 1 (u) (u) 00 (D)PSK 10 (D)QPSK Kohärenter Empfang Iph halbdurchlässiger Spiegel Signal @ Etrans Fotodiode PD = | 0 1 Lokaloszillator @ ELO Iph 0 1 |Etr ans + ELO |2 Iph / Etrans ELO exp(|!trans t + ') 1| ⇥0 Quadratur-Amplitudenmodulation: QAM (u) (u) (u) (u) QAM16 QAM64 weitere Beispiele Fig. 2. Modified design of the proposed 8QAM modulator. TECHNOLOGY, VOL. 28, NO. 4, FEBRUARY 15, 2010 1. Schematic illustration of the proposed 8QAM modulator where the conation diagrams are based on simulation by assuming ideal modulators. the coherent receiver, with a special emphasis on the proed cascaded multimodulus blind equalization algorithm. Section IV, we describe experimental results employing modulation and detection techniques described before, luding the generation and intradyne detection of 114 Gb/s M-RZ-8QAM signal and 32-Tb/s transmission over 580-km -band EDFA-only optical ULL SMF-28 fiber utilizing plification. Finally, we present the conclusions in Section V. II. HIGH-SPEED 8QAM MODULATOR DESIGN have two potential problems when used in a real system. First, the MZM2 inside the dual-parallel MZM is only driven with 0.7 V , and therefore, is less tolerant to the transmitter-side band-limiting effects (limited electrical driver amplifier bandwidth and optical modulator electro/optic (E/O) response bandwidth) than the usual case with full 2 V drive. This is due to the fact that the MZM has a nonlinear E/O response function when biased at the null point, where V given by denotes the driving electrical voltage. Second, the common PM will linearly transfer the amplitude jitter of the driving electrical signal into phase jitter of the generated optical signal, making it very sensitive to the transmitter-side band-limiting effects. The two issues described before can be solved by a modification in the design, as shown in Fig. 2. In the modified design, the required amplitude modulation imbalance between the upper and the lower branches in the dual-parallel MZM is achieved by introducing an extra 5.7 dB power attenuation in the lower branch (or the higher branch). Note that this power attenuation smitted and received WDM spectra on a 25-GHz grid after 8-QAM 16-QAM smission. Upper right: Optimization of Raman gain and n theory, PDM-8QAM can tolerate 1.5 dB more noise than M-8PSK [1], [34] because it encodes the signal in all four mensions of an optical carrier, and is probably the optimal Überblick zu degradierenden Effekten Rauschen AM p(E) ‣ zufällige Signalschwankungen ‣ Laserrauschen (Phasen, MPN) ‣ spontane Emission (ASE) PM 0 M 0 M p(E) ‣ Quantenrauschen ‣ Empfängerrauschen -M ‣ thermisches Rauschen ‣ Schrotrauschen Rb,max = B · log2 PSignal 1+ PRauschen ⇥ Konstellationsdiagramme, Übertragungsqualität Selbst- und Kreuzphasenmodulation: SPM und XPM XPM λ1 XPM λ2 λ3 I SPM SPM λ Vierwellenmischung (Four-Wave Mixing, FWM) λ1 λ2 mit 12 = 2 1 21 = 2 2 I λ12 2 1 λ21 aber u. a. auch: 2121 = 21 + 2 FWM FWM λ 1 IXPM-IFWM t Anfang: Dacc=0 I-XPM I-FWM t Mitte: Dacc>0 t Ende: Dacc=0 Bitfehlerwahrscheinlichkeit ‣ Anzahl der falsch detektierten Bits im Vergleich zur Gesamtanzahl der Bits: ! NFehler BER = Ngesamt ‣ Bitfehlerrate hängt von der Signalqualität ab, u.a. vom Rauschen: ! PSignal SNR = PRauschen ‣ Im Optischen wird Rauschen vornehmlich durch das ASERauschen bestimmt. Wenn EDFAs in der Strecke sind, dominiert ASE i.A.: PSignal PSignal OSNR = = PASE SASE · ⌫ Power-Budget ‣ Verluste ‣ Faser ‣ Stecker, Spleiße ‣ Variation, Alterung Ptrans Faserdämpfung Steckerdämpfung Spleiße Dispersion ‣ Signalverschlechterung, Verzerrung ‣ Margin Verzerrungen Margin Pmin Systemauslegung, Margins ‣ Empfängerempfindlichkeit ‣ minimale Leistung am Empfänger, damit Bitfehlerrate noch eingehalten wird ‣ untere Grenze für Empfangsleistung ‣ Maximalleistung am Sender gegeben u.a. durch: ‣ Augensicherheit ‣ Nichtlinearitäten ‣ Differenz ergibt das Budget Zusammenfassung ‣ Aufbau einer optischen Übertragungsstrecke ‣ Multiplextechniken ‣ Zeitmultiplex, Wellenlängenmultiplex ‣ Modulationsformate ‣ vor allem: Amplituden- und Phasenmodulation ‣ degradierende Effekte ‣ Systemparameter