Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
tI tl ,b LM3 UNIVERSITI TUN HUSSEIN ONN MALAYSIA FINAL EXAMINATION SEMESTER I SESSTON 20r0t2011 COURSE NAME ENGINEERING STATISTICS COURSE CODE DSM 2932 PROGRAMME 2DFTI3DFT/ 3DDT/ 3 DET/3DEE EXAMINATION DATE NOVEMBER/DECEMBER 20 I O DURATION 2II2 INSTRUCTIONS ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B HOURS THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES DSM2932 PART A Ql Refer to the data in Table 1: Table x v (a) Find I xi,Z 60 74 54 76 52 66 /i,2 xi2, 2 xi !i, 42 70 48 76 arrrdl y? I 36 68 34 62 28 54 26 64 l8 54 . (5 marks) (b) Find,S",, S- and ^!o. (3 marks) (c) calculate the sample correlation coefficient and interpret the result. (3 marks) (d) By using the least square method, estimate the regression line. (6 marks) (e) Estimate x if y:72. (3 marks) Q2 (a) A manufacturer of car batteries claims that the lifetime of his batteries is approximately normally distributed with a standard deviation o : L2 years. A random sample of 15 of these batteries has an average lifetime 2.9 yearc and a standard deviation ol t.g yeaxs. Use a level of significance d = 0.02.Test the hypothesis about the average lifetime of batteries with Hs : p:2.0 fi: P#2.0 (9 marks) (b) A teacher wants to determine whether the new method of teaching that was recently being introduced is better than the traditional method. One test was given to both groups from the same school by the end of week 6. Each group was taught using different method (one group with the new method, another group using the tradilional method). The group which has the higher test score is assumed to have the better method. The data is in Table 2: Table 2 New Method \ Traditional Method = 69.2 7z = 67.5 sl = 49.3 nr=50 si = 64.5 n, =80 Test the hypothesis for the above statement witha = 0.05 for DSM2932 Ho:Fr-ltz=0 Ht:ltt-lJr>0. (11 marks) PART B Q3 (a) A discrete random variableXis given by 'r+1. x=0. 1.2 10 "*r= 9 -2x x=J) { l0 ' + (i) Show that p(x) is a pdf. (ii) Find P(0 < X <3). (iii) Find the cumulative distribution, F(x). (10 marks) (b) A continuous random variable xhas a probability density function r, \ l*'*bx+1, 0<x<l otherwise L 0' Jlx)=1 where a and D are constants. (D (ii) Given that E(g: ?, Show that Var(X) =! J firrd the value of a arrd, b. . 45 (10 marks) Q4 (a) A supervisor from a company found out that 7 o/o of theproduct is defective and cannot be exported .If 20 of the product were selected, find the probability that (i) none is defected, (ii) between 2 and 5 are defected, (iii) at most 3 are defected. (7 marks) (b) If the average of summons given per week is 10, find the probability that (i) (ii) exactly 4 summons were given per week, at least 2 summon were given per week. (6 marks) DSM 2932 (c) Marks for Statistics test have a mean 73 and standard deviation 12. Find the probability that one student is selected at random, the marks is (i) (ii) between 65 and 78, more than 75. (7 marks) Qs (a) ll, l, Given a population of 7 numbers which are I 12, 13, 14,9 and 7. sample of 5 can be drawn from that population with replacement, find population mean and standard deviation, sample mean and standard deviation, the probability that the sample mean is greater than 10. rf arandom (i) (ii) (iii) (8 marks) (b) An electronics company manufactures two types of resistors, type X and type 1z The resistors of type Xhave a mean resistance of 100 Cl and a standard deviation of l0 O. The resistors of type )'have a mean resistance of 99 O and a standard deviation of 15 C). A random sample of 25 for each one is selected from normal population. (i) (ii) (iii) State the distribution of X and V . Find the probability that sample mean of type X greater than sample mean of Wpe Y. Find the probability that p(l .0 <N - F< t.s;. (12 marks) Q6 (a) Given a random sample of size, n = 50 from a normal population with variance o'=225 and mean population mean. i=64.3. Construct the 95 % confidence interval for the (8 marks ) (b) The wall thickness of 25 glass 2-liter bottles was measured by a quality control engineer. The sample mean was x :4.058 mm and the sample standard deviation w&s 11 :0.081 mm. Another sample of wall thickness 17 mm with the sample mean y :3.912 mm and the sample standard deviation s2 :0.075 mm was also selected. Assume that the populations are approximately normal with equal variances. (i) (ii) State the point estimate for the difference means of both wall thicknesses. Construct the 99Yo confidence interval for the difference means of both wall thicknesses. (12 marks ) DSM2932 BAHAGIAN A 51 Berpandu kepada data di Jadual (a) l: Dapatkan D xi,E yi,Z xiz, D xi yi, dan} yi2 (5 markah) (b) Dapatkan S,y, So and qo. (3 markah) (c) Dapatkan korelasi koefisien sampel dan terangkan keputusan. (3 markah) (d) Tentukan persamaan garis regresi dengan menggunakan kaedah kuasa dua terkecil. (6 markah) (e) Anggarkan rjika y : 72. (3 markah) s2 (a) Suatu kilang yang membuat bateri kereta mendakwa bahawa jangka hayat bagi bateri yang dihasilkan mempunyai taburan hampir normal dengan riritr- piawai o = 1.2 tahun. Satu sampel rawak 15 bateri y*g dipitih mempunyai min ha*t 2.9 tahun dan sisihan piawai 1.8 tahun. Guna aras keertiaan a= 0.02. Uji hipotesis terhadap min jangka hayat bateri, iaitu Hs: p:2.0 H: P*2'o (9 markah) (b) leorang guru ingin tahu sama ada kaedah mengajar yang baru diperkenalkan lebih baik daripada kaedah tradisi. Satu ujian diberikan tepaaa'aua kumpulan pelajar dari sekolah yang sama pada akhir minggu ke-6. Kumpulan masing-masing diajar dengan kaedah berlainan (satu kumpulan dengan kaedah yang baru, rito m-luan lagi JZng- kaedah yang lama). Kumpulan yang menghasilkan skor ujian yang tinggi dianigap teknik mengajar kumpulan itu lebih baik. Data yang terhasil di Jadual2: Jadual 2 Kaedah Baru Kaedah Lama 4 = 69.2 7z = 67.5 sl = 49.3 sl = 64.5 \=50 nz =80 DSM2932 Lakukan ujian hipotesis untuk menguji pemyataan di atas pada aras keertian a 0.05 = iaitu Ho:lJt-Pz=0 Hr:pt-ltr>0 (l I markah) BAHAGIAN B 53 (a) Suatu pembolehubah rawak diskritXdiberi oleh 'r+1. x=0. 1.2 l0 ,*,= 9 { -2x l0' x=3, 4 (i) Tunjukkan p(r) adalah pdf. (ii) Dapatkan P(0 < X <3). (iii) Dapatkan fungsi kumulatif, F(x). (10 markah) (b) Pembolehubah rawak selanjarXmempunyai fungsi ketumpatan kebarangkalian t, \ l*'*bx+|, 0<x<l selainnya L 0, J\x)=1 dengan a dan b adalahpemalar. (i) Diberi (ii) Tunjukkan bahawa Var(/) E(X): ? , J "*nilai bagi a dan b. : +. 45 (10 markah) S4 (a) Seorang penyelia daripada sebuah syarikat mendapati 7 % danpada pengeluaran adalah rosak dan tidak dapat di ekspot. Jika2} daripada pengeluaran ini dipilih, dapatkan kebarangkalian (i) (ii) (iiD tiada yang rosak, di antara 2 dan 5 rosak, selebih-lebihnya 3 rosak. (7 markah) (b) Jika purata saman yang diberikan dalam seminggu ialah 10, dapatkan (i) tepat4 saman dalam seminggu, kebarangkalian DSM 2932 (ii) sekurang-kurangnya2dalam seminggu. (6 markah) (c) Markah ujian Statistik mempunyai min 73 dan sisihan piawai 12.Dapatkan kebarangkalian jika seorang pelajar dipilih secara rawak, markah adalah (i) (ii) di antara 65 dan78, lebih dari 75. (7 markah) 55 (a) Diberi satu populasi terdiri daripada 7 nombor iaitu I l, 12, 13, lI,14,9 dan 7. Jika sampel rawak sebanyak 5 diambil daripada populasi itu dengan pengembalian, dapatkan (i) (ii) (iii) min dan sisihan piawai populasi, min dan sisihan piawai sampel, kebarangkalian min sampel melebihi 10. (8 markah) (b) Suatu kilang elektronik menghasilkan 2 jenis perintang, jenis X dan jenis ). perintang jenis Xmempunyai nilai purata 100 Q dan sisihan piawai l0 f). Manakala, perintang jenis mempunyai nilai purata 99 Q dan sisihan piawai 15 C). Satu sampel rawak bersaiz 25 bagi setiap jenis perintang telah dipilih masing-masing dari populasi normal. I (i) (ii) (iiD Q6 (a) Nyatakan taburan bagi X dan 7. Cari kebarangkalian min sampel bagi jenisXmelebihi min sampel jenis Dapatkan kebarangkalian p(l .0 < N P< t.S). (12 markah) I. - Diberi satu sampel rawak bersaiz, n = 50 daripada satu populasi normal yang mempunyai varians o' =225 dan min i =64,3. Dapatkan 95 % selang keyakinan bagi min populasi. (8 marks ) (b) Ketebalan dinding bagi 25 botol kaca 2-liter telah diukur oleh seorang jurutera kawalan mutu. Didapati bahawa min sampel 4.058 mm dan sisihan piawai sampel sl 0.081 mm. Satu sampel ketebalan dinding yang lain bersaiz 17 mm dengan min sampel y :3.912 mm dan sisihan piawai sampel s2:0.075 mm telah dipilih. Anggap kedua-dua populasi tersebut sebagai taburan hampir normal dengan varians yang sama. : (i) (ii) f : Nyatakan titik anggaran bagi bezaantanmin kedua-dua ketebalan dinding. Bina 99Yo selang keyakinan bagi beza arfiara min kedua-dua ketebalan dinding. (12 markah ) DSM2932 F'INAL EXAMINATION SEMESTER / SESSION: SEM I I 201012011 COURSE NAME : ENGINEERING : 2DFTI3DFTI 3DDT/3DET/3DEE : DSM2932 PROGRAMME STATISTICS COURSE CODE Formulae srr:Z*,y,-Z*'?'', ,sB, lilx,)=r, i=-o P(x)=(:),' =I *' -E !')' n :/-FtI, E(X)=lx7.:x), f..F{*) Vr dx =1, E(X)= f_xp(x) dx, Var(X) = E(X' ) - [E(X))', p)'-' r = 0, l, ..., fl , P(X - r) = e-, .(l - x - N(/,, o'), z- ,sr:l!,'- Er,)' ,p, r =0, rl. N(0, r) and t = +, N - *(r,+), z = 1, ... -+#- , o, N(0, r), r =-ffi, o?,o|\ - - -,( Xr-Xr-Nlpr-pz,---t, ur nz) \ (7, -7r)- zat2 -14-,.4. p, - Fz < (7t -ir)* Vq (i, (7, -ir)- tr": zo12 l:+- n2 1r, t n2 . p, - trz < (rr -rr)+ r,,r,lt*t -ir)- r",r,EE n2 n2 l\ torz,, ^S" EJ l\ < 1r, n2 ltr - Fz < (it -ir)+ tal2, v S" EJ ,, _(nr-l)sl +(nz--l)sl and v =nt*fl2_2, nr+nr-2 1r, where nz DSM 2932 FINAL EXAMINATION SEMESTER / SESSION: SEM I l20l0l20Il COURSE NAME : ENGINEERING STATISTICS PROGRAMME 2DFTI3DFTI 3DDTI3DET/3DEE COURSE CODE DSM2932 (ir-L)-torz," .,8(r,'*rr1 . pr- pz < (i,-rr)+ Yn" where degree of freedom, (r, v:2(n tat2,v -l) t',- -ir)- torz,,,ltlnl *€n2 . lt t - ttz < (x-, - ir)* where degree of freedom, W Gi 1", v: nt-l + |("l to12,, t', -Ir)- ta/2, -ir)+ v ta/2, v ) ,si . s; r,-i ! l"rf nz -l j6l .";) (7t .";) "/{.,'4 \nt n2 and, and v = Gll"'*tllnrl Gi l,,Y *G; l",l nr-l 7= (t, - F)-- (ttt- tt), 7 = (x, loi , "i 1,1 n, nz t'rE+ ) , = (v, - 7i - Q=, tl . ./+ \l n' n2 - p,) where u tl = ,9? l"r\* l",l ,, Gi l,,l *G: l,,Y nr-l nr-l =2(n-l), l=ftt+nr-2, nz-l