Download THE NULLSPACE OF NESTED MAGIC SQUARES

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
IJRRAS 8 (3) ● September 2011
www.arpapress.com/Volumes/Vol8Issue3/IJRRAS_8_3_07.pdf
THE NULLSPACE OF NESTED MAGIC SQUARES
Ayoub ElShokry1 & Saleem Al-Ashhab2
University of Khartoum ,Faculty of Education ,Department of Mathematics , Omdurman ,Sudan
Depatement of Mathematics, Al Al-Bayt University, Mafrq, Jordan
Email: ayou1975@ maktoob.com; [email protected]
ABSTRACT
In this paper we formulate the general structure of the nullspace and subspaces of the nullspace for nested magic
squares, where we consider two different types of centre. Further, we study the properties of these spaces.
AMS classification number: 15A15.
Key Words: Nullspace, Magic Squares, Mathematical induction.
1. INTRODUCTION
We consider magic squares here as matrices and study the algebraic properties for them. Hence, a semi magic square
is a n by n matrix such that the sum of the entries in each row and columns is the same. The common value is called
the magic constant. If, in addition, the sum of all entries in each left-broken diagonal and each right-broken diagonal
is the magic constant, then we call the matrix a pandiagonal magic square. It is well-known that the following
structure
A
B
C
2s–A–B–C
E
2s– A–B–E
A+E – C
B+C – E
s–C
A+B+C – s
s–A
s–B
s–A–E+C
s–B–C+E
s–E
A+B+E–s
is a general structure of the pandiagonal magic square 4 by 4. Here, the magic constant is 2s.
When we want to obtain pandiagonal magic squares 6 by 6, having a similar structure to that of the pandiagonal
magic squares 4 by 4, we consider the matrix
a1
a7
a13
s – a4
s – a10
s – a16
a2
a8
a14
s – a5
s – a11
s – a17
a3
a9
a15
s – a6
s – a12
s – a18
a4
a10
a16
s – a1
s – a7
s – a13
a5
a11
a17
s – a2
s – a8
s – a14
a6
a12
a18
s – a3
s – a9
s – a15
We then require the following conditions:
a1  a2  a3  a4  a5  a6  3s
a7  a8  a9  a1 0  a1 1  a1 2  3s
a1 3  a1 4  a1 5  a1 6  a1 7  a1 8  3s
a1  a4  a7  a1 0  a1 3  a1 6  0
a2  a5  a8  a1 1  a1 4  a1 7  0
a3  a6  a9  a1 2  a1 5  a1 8  0
311
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
These conditions suffice to ensure that the resulting square is pandiagonal. We have as a possible form of these
squares:
J–L –K+J+I+H+E+D+C
– 3/2 s
L–J+G–
E+B
K–I+F–
D+A
–L–K–H–G–F–C–B–A+
9/2 s
L
K
–J–I–H–G–F+3s
–E–D–C–B–A+3s
L+K+H+G+F+C+B+A–7/2
s
s–H
s– C
J
E
s–L
I
D
s–K
s–G
s–B
s–F
s–A
H
C
L+K–J–I–H–E–D–C+
5/2s
J+I+H+G+F–2s
E+D+C+B+A –2s
G
B
s–L+J–
G+E–B
s–J
s–E
F
A
s–K+I–
F+D–A
s–I
s–D
We call this kind of squares the pandiagonal magic square 6 by 6 of the special structure. Note that the magic
constant is now 3s.
The nullspace of a matrix A is the solution set of the homogenous system Ax = 0. The pandiagonal magic square 4
by 4 possesses a nontrivial null space. Using the previous notation for a pandiagonal magic square 4 by 4 we can
easily prove (see [1]) that this nullspace can be written in the following form
 A  2 B  C  2s 


C  A

{z 
: z  R}
2s  A  2 B  C 


AC



Note that the sum of the entries is zero. Furthermore, the multiplication of the square as a matrix with the vector
 A  2 B  C  2s 
1


 
q 1
C  A

z

2 s  A  2 B  C  2 s 1


 
 AC

1


 
, q, z  R
yields the vector
q
 
q
q
 
q
 
This is due to definition of the magic square. In [1] we find that the pandiagonal magic square 6 by 6 of the special
structure possesses also a nontrivial nullspace, which can be written in the following form:
  (DJ - DG + AG + BI - EI + EF - AJ - BF)



  (3Is - BI - 2AI - 2IC - EI - 2AH + 2DH + 3As - 3Ds - 3Fs + EF + BF + DJ + 2DF + 2CF - AG - AJ + DG) 
  (BI - EI - 2EH + 2BH - 3Bs - 3Js + 3Gs + 3Es - AG - EF - 2CG + BF - 2EG + 2BJ + 2JC + DJ - DG + AJ)
 : z  R}
{z 
 ( DJ - DG + AG + BI - EI + EF - AJ - BF)

 (3Is - BI - 2AI - 2IC - EI - 2AH + 2DH + 3As - 3Ds - 3Fs + EF + BF + DJ + 2DF + 2CF - AG - AJ + DG) 


 ( BI - EI - 2EH + 2BH - 3Bs - 3Js + 3Gs + 3Es - AG - EF - 2CG + BF - 2EG + 2BJ + 2JC + DJ - DG + AJ) 


We will therefore denote the vectors in this nullspace as follows:
 x1 


 x2 
x 
 3 
  x1 


  x2 
 x 
3 

In this case the multiplication of the square with the vector
312
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
 x1 


 1
 
x

 1
 2 
 x3 
q  1
 
 
z
  x1  3s 1
 1


 
  x2 
 1


 
x 
3

,
q, z  R
yields the vector
q
 
q
q
 
q
q
 
q
 
Nested magic squares
By nested squares we mean matrices having certain properties, which make them and some of their submatrices
semi magic squares or pandiagonal magic squares. By a nested semi magic square 6 by 6 with a pandiagonal magic
square 4 by 4 we mean a matrix of the form
r11
p11
P21
P31
P41
e11
where we require
b11
A
E
s– C
s–A–E+C
s – b11
b12
B
2s–A–B–E
A+B+C–s
S–B–C+E
s – b12
b13
C
A+E–C
s–A
s–E
s – b13
b14
2s–A–B–C
B +C – E
s–B
A+B+E–s
s – b14
d11
s – p11
s – p21
s – p31
s – p41
f11
d 11  3s  r11  b11  b12  b13  b14
e11  3s  r11  p11  p 21  p 31  p 41 .......... (1)
f 11  b11  b12  b13  b14  e11  s
This ensures that the matrix as a whole is a semi magic square with 3s as a magic constant. In the centre we have
a pandiagonal magic square. We introduce also the concept of the multi-nested semi magic square 2n by 2n with a
pandiagonal magic square 4 by 4. This will be the following matrix
313
IJRRAS 8 (3) ● September 2011
rmm
r(m-1)m
rm(m-1)
.
.
.
.
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
rm1
.
bm1
.
bm2
.
bm3
.
bm4
.
dm1
.
.
.
.
.
.
b22
b12
.
.
b23
b13
.
.
b24
b14
.
.
d21
d11
s–
p11
s–
P21
d22
s–
r12
s–
p12
s–
P22
s–
P31
s–
P41
f11
.
.
dm(m-1)
.
dmm
s –r(m1)m
.
.
.
r22
r12
r21
r11
.
.
B21
B11
r2m
r1m
.
.
.
.
.
.
.
p1m
.
.
.
p12
p11
A
B
C
2s–A–B–C
P2m
.
.
.
P22
P21
E
2s–A–
B–E
A+
E–
C
B +C – E
P3m
.
.
.
P32
P31
s–B
P4m
.
.
.
P42
P41
e1m
.
.
.
e12
e11
e2m
.
.
.
e22
s–
A
s–
E
s–
b13
s–
b23
.
.
.
.
.
.
.
e(m-1)m
.
emm
s–
.
rm(m-1)
.
.
s–C
–s + A
+B+C
s–A–
E+C
s – b11
s–B–
C+E
s – b12
s–
r21
.
.
.
s – b21
s – b22
.
.
.
.
.
.
s–
rm1
s –bm1
s – bm2
s–
bm3
A+B+E–s
s – b14
s – b24
.
.
.
s – bm4
s–
d21
.
.
.
s–
dm1
.
.
.
.
.
.
.
.
.
.
s –r2m
s –r1m
.
.
.
s –p1m
.
.
.
s–
P2m
s–
P32
.
.
.
s–
P3m
s–
P42
s–
e12
f22
.
.
.
.
.
.
s–
P4m
s –e1m
.
.
.
s –e2m
.
.
.
s–
s–
e(m-1)m
fmm
.
.
.
.
.
dm(m-1)
where m= n – 2 and
d mm  ns  rmm  rm( m1)  ...  rm1  bm1  bm2  bm3  bm4  d m1  ...  d m( m1)
emm  ns  rmm  r( m1) m  ...  r1m  p1m  p2m  p3m  p4m  e1m  ...  e( m1) m
f mm  rm( m1)  ...  rm1  bm1  bm 2  bm3  bm4  d m1  ...  d m( m1)  emm  (n  2)s
Note that we obtain semi magic square each time we remove the outer frame of the square.
By a multi-nested semi magic square 2n by 2n with a pandiagonal magic square 6 by 6 we mean the following
matrix:
314
IJRRAS 8 (3) ● September 2011
pmm
pm(m-1)
P(m-
…
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
Pm1
Vm1
Vm2
Vm3
Vm4
Vm5
Vm6
rm1
.
.
.
.
.
.
.
.
.
.
.
.
p21
.
.
v21
.
.
v22
.
.
v23
.
.
v24
.
.
v25
.
.
v26
.
.
r21
p11
v11
v12
v13
v14
v15
v16
r11
L–J
+G–
E+B
K–
I+F–
D+A
L
K
J
I
–L –K
–H–G
–F–C –
B–A+
9/2s
H
E
D
C
s–L
s –K
s–G
s–F
L+K– J
– I –H
–E– D–
C+
5/2s
J + I
+H+G
+F–2s
E+D+
C+B+
A –2s
s – v14
...
rm(m-1)
rmm
.
s
–
p(m-1)m
.
.
.
…
s –p1m
s
–
u11
s –
p12
s –
u12
…
s
–
u1m
F
s
–
u21
s –
u22
…
s
–
u2m
B
A
s
–
u31
s –
u32
…
s –u3m
s–L
–J–
G+E
–B
s– K
+ I –F
+D –
A
s
–
u41
s –
u42
…
s –u4m
s–J
s–I
s
–
u51
s –
u52
…
s –u5m
s –
E
s–D
s
–
u61
s –
u62
…
s –u6m
s –
v15
s –
v25
.
.
.
s
–
v16
s
–
v26
.
.
.
t11
s –
w12
t22
…
s
–
w1m
.
1)m
.
.
.
P1m
…
p22
p12
u1m
…
u12
u11
u2m
…
u22
u21
u3m
…
u32
u31
u4m
…
u42
u41
u5m
…
u52
u51
–L
–
K+J+I
+H+E+
D+C–
3/2s
–J–I –
H–G–
F + 3s
–E–D –
C–B A+3s
L+K+
H+G+
F+C+B
+A–
7/2 s
s–H
u6m
…
u62
u61
s–C
s–B
s–A
w1m
...
w12
w11
s – v11
w22
s –
p21
.
.
.
s – v21
s
–
v12
s
–
v22
.
.
.
s
–
v13
s
–
v23
.
.
.
.
.
.
w(m-
.
.
.
.
s – v24
.
.
.
G
s – r21
r22
.
.
.
.
1)m
.
.
s
–
w(m1)m
wmm
s –pm(m-1)
.
s –
pm1
s –vm1
s –vm2
s –vm3
s –vm4
s –
vm5
s –vm6
s –rm1
.
s –rm(m-
tmm
1)
where m = n – 2,
rmm  ns  pmm  pm( m1)  ...  pm1  vm1  vm 2  vm3  vm4  vm5  vm6  rm1  ...  rm( m1) ,
wmm  ns  pmm  p( m1) m  ...  p1m  u1m  u 2m  u3m  u 4m  u5m  u 6m  w1m  ...  w( m1) m ,
t mm  pm( m1)  ...  pm1  vm1  vm2  vm3  vm 4  vm5  vm6  rm1  ...  rm( m1)  wmm  (n  2)s.
For example, we define the nested semi magic square 8 by 8 with a 6 by 6 pandiagonal square as the following
square:
315
IJRRAS 8 (3) ● September 2011
p11
u11
v11
– L –K + J +I
+H + E + D +
C
– 3/2 s
u21
–J –I –H –G–
F+ 3s
u31
u41
u51
where
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
v12
L–J+G
–E+B
v13
K–I–
D+F+A
v14
–L –K –H
–G –F –C
–B –A +
9/2 s
v15
L
v16
K
J
I
H
G
F
–E –D –C –B–
A+ 3s
L+K+H+G
+F+C+B+
A – 7/2 s
E
s–L
D
s –K
B
s – L
+J –
G+ E
–B
A
s–K –
F +D –
A +I
s–H
s–G
s–F
s–J
s–I
s–B
s–A
C
L+K–J
– I –H –E
–D – C +
5/2s
J +I+ H
+ G +F –
2s
E+D+C +
B+A –2s
s – v12
s – v13
s–v14
s–v15
u61
s –C
w11
s – v11
r11
s – u11
s – u21
s – u31
s–E
s–D
s – v16
s – u41
s – u51
s – u61
t11
r11  4 s  p11  v11  v12  v13  v14  v15  v16
w11  4 s  p11  u11  u 21  u 31  u 41  u 51  u 61
t11  v11  v12  v13  v14  v15  v16  w11  2 s
2. MAIN RESULTS
We will prove several statements about the nullspace of the mentioned nested magic squares. By doing this we will
use mathematical induction. Hence, some results will be used for proving others. We start with
Proposition 1: The nested semi magic square 6 by 6 with a pandiagonal magic square 4 by 4 has the following
space
 1



 A  2 B  C  2 s  1 

2 


 C  A  1



2
{z 
: z  R},1  R
1 
 2s  A  2 B  C 

2 



1
AC 

2




 1

as a subspace of the nullspace of this square.
Proof: We search for real numbers a1 ,... , a6 such that
a1  C1  ...  a6  C6  0
where the capital letters denote the columns of the matrix. We set
a1  a6 and q  sa1 . We set
316
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
 a2 
 A  2 B  C  2s 
1
 


 
C

A
q
 a3 


1
 a   z  2s  A  2 B  C   2s 1 ....................... (2)
 4


 
AC

1
a 


 
 5
where z is a unknown real number. Now, the expression
a1  C1  ...  a6  C6
is the result of matrix multiplication of the square with the vector
 a1 


 a2 
a 
 3
 a4 


 a5 
a 
 6
The result of this operation will be according to our choice a vector which has the following middle entries







p11a1   
 
p 21a1   

p 31a1   
 

p 41a1 
 
sa1   sa1
 
sa1   sa1

sa1   sa1
 

sa1 
  sa1
 p11a1 

 p 21a1 
 p 31a1 

 p 41a1 

Hence, the middle entries are zero and we have to equate the first and last entry of the vector to zero. We will use
this requirement to determine the values of a1 and z. Thus, we solve the following two equations:
r 11a1  b11a2  b12a3  b13a4  b14a5  d11a1  0
e11a1  (s  b11 )a2  (s  b12 )a3  (s  b13 )a4  (s  b14 )a5  f11a1  0
This system can be simplified to
(r11d11)a1  b11a2  b12a3  b13a4  b14a5  0
..........
..... (3)
(e11  f11)a1  s(a2  a3  a4  a5 )  b11a2  b12a3  b13a4  b14a5  0
According to the definition of the variables (see (1) and (2)) we have
r11  d11  3s  b11  b12  b13  b14
e11  f11  b11  b12  b13  b14  s
2q
 2a1
s
Note that we used the sign properties of the vectors belonging to the nullspace of the 4 by 4 square. Upon using the
last relations we convert the system (3) into
a 2  a3  a 4  a5 
(3s  b11  b12  b13  b14 )a1  b11a 2  b12 a3  b13a4  b14a5  0
(b11  b12  b13  b14  3s)a1  b11a2  b12a3  b13a4  b14a5  0
We recognize that one equation is redundant. We substitute the values of
a 2 , a 3 , a 4 and a 5 . Then, we obtain
from the last equation
3
(2s  b11  b12  b13  b14 )a1  (b11( A  2B  C  2s)  b12 (C  A)  b13 (2s  A  2B  C )  b14 ( A  C )) z  0
2
If the coefficient of a1 is not zero, then we conclude that
a1 1 z
Upon substituting this value for
that
a1 we are done with the proof. If the coefficient of a1 is zero, then we conclude
a1 can be any number, while z might be zero. In this case we can say
a1 1u, 1  1, u  R
317
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
and the proof is done with u instead of z.
Remark: 1) We note that the sum of all entries of any vector in the subspace is zero.
2) When we consider the following numerical example for a nested semi magic square 6 by 6
9
5
2
0
3
–16
7
2
6
1
–7
–6
4
3
–9
4
4
–3
1
0
8
–1
–5
0
8
–3
–3
–2
10
–7
–26
–4
–1
1
–2
35
We obtain the following reduced row echelon form
1

0

0

0


0

0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1 
35 
 
11
19 

11 
46 
11 
8
 
11 
0 
Hence, the nullity of the square is one. Therefore, the described subspace in proposition 1 is actually the nullspace of
the square.
Proposition 2: The multi-nested semi magic square 2n by 2n with a pandiagonal magic square 4 by 4 has the
following space
 n  2





n  2
 n  3  n  1



n  3 n  2


 n  4  n  2  n  1



.


.



.





  1   2  3  ...  n  2

3
4
n 1



n  2
1
A

2
B

C

2
s


...



2
n 1 



n  2
1
 ... 
C  A 

2
n 1

 : z  R}
{z

n  2
1
2
s

A

2
B

C


...



2
n 1 



n  2
1
 A  C  2  ...  n  1



n  2
2 3


  1  3  4  ...  n  1



.

.



.




 n  4   n  3   n  2

n2
n 1





 n  3  n  2

n 1




 n2

for all n  3 as a subspace of the nullspace of this square.
Proof: We will use mathematical induction in our proof. We start with
318
IJRRAS 8 (3) ● September 2011
Basis step: when n 
as claimed.
We continue now with
3
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
we obtain the semi magic square 6 by 6, which has according to proposition 1 a subspace
Induction step: we suppose that the given form of the nullspace is true for
the nullspace of any multi-nested square
following structure
2k by 2 k
n k
, i. e. there exists a subspace of
with a pandiagonal magic square 4 by 4, which has the
 k  2





k  2



k

3
k

1




k  3 k  2




k

4
k 2
k 1


.



.


.



x

k  2
 2 3


 1


 ... 
 1 

x

3
4
k

1


 2


k  2 
1
.

 A  2 B  C  2s 

 ... 


2
k 1 

.





.

 C  A  1  ...  k  2



2
k 1
 ,
 xk
  z 
k  2 
1


 2s  A  2 B  C 

 ... 
 xk  1 

2
k 1 






.

 A  C  1  ...  k  2

.



2
k 1




3
k  2

.

  2 

 ... 
x

 1

3
4
k 1
 2k 


.


.



.




k  3 k  2




k

4
k 2
k 1




k  2



k

3


k 1


 k 2

We construct now a subspace of the nullspace of the multi-nested square
zR
2k  2 by 2 k  2
. We search for
a1 ,... , a2 k 2 such that the following relation holds
a1  C1  ...  a2k 2  C2k  2  0
where the capital letters denote the columns of the square. We choose
 a2

a
 3
a
 4
.
.

.
a
 2k

a1  a2 k  2 , q  sa1 . We choose further
x

 1

x

 1
2



 
.


 1



 1
.


 
.


. 



q  
. .......( 4)

  z  xk
 

 ks  . 

x
 k  1

 



 1
.


 1
.

1
 



 1
.

x

 2k 
319
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
Since the statement of the proposition holds for
2k by 2 k
n k
square inside the multi-nested square
entry is equal to
, we conclude that the multiplication of the multi-nested
2k  2 by 2 k  2
by this vector yields a vector, where each
q . Hence, the multiplication of the multi-nested square 2k  2 by 2 k  2
by
 a1



a

 2

 a3



.

.



.

a

 2k  2 


yields
r

 sa  r

a
 m( m  1) a1

 1

m( m  1) 1



sa

 

1   sa  r
r
a
a
 ( m  1)(m  1) 1  
  1
( m  1)(m  1) 1 

sa

 

1 
.
 

 .
.
 .



.

 .



.
 
.



 .



 r2( m  1) a1
   sa   sa1  r2( m  1) a1

1

 



 r1( m  1) a1
   sa   sa1  r1( m  1) a1

1

 



 p1( m  1) a1
   sa1   sa1  p1( m  1) a1


 



 p2( m  1) a1
    sa1    sa1  p2( m  1) a1


 



 p3( m  1) a1
   sa1   sa1  p3( m  1) a1


 

 

sa
a
p
 

1   sa1  p4( m  1) a1
4
(
m

1
)
1

   sa  

1   sa  e
e
 

a
a
1( m  1) 1
 1( m  1) 1
   sa   1

1
e
 
 sa  e

a
a

1
2( m  1) 1
 2( m  1) 1
 .

 
.
 
.



 .



.
.
 .

 
.
 
.



   sa1  

 em( m  1) a1

 sa1  em( m  1) a1





Therefore, all the entries are zero except the first and last entry. We will use this requirement to determine z and
. We obtain therefore the following equations
r( m1)( m1) a1  r( m1) m a 2  ...  r( m1)1a k 1  b( m1)1a k  b( m1) 2 a k 1  b( m1)3 a k  2
 b( m1) 4 a k 3  d ( m1)1a k  4  ...  d ( m1)( m1) a1  0
e( m1)( m1) a1  ( s  r( m1) m )a 2  ...  ( s  r( m1)1 )a k 1  ( s  b( m1)1 )a k  ( s  b( m1) 2 )a k 1
 ( s  b( m1)3 )a k  2  ( s  b( m1) 4 )a k 3  ( s  d ( m1)1 )a k  4  ...  f ( m1)( m1) a1  0
This linear system can be simplified to
(r( m1)( m1)  d ( m1)( m1) )a1  r( m1) m a 2  ...  r( m1)1a k 1  b( m1)1a k  b( m1) 2 a k 1  b( m1)3 a k  2
 b( m1) 4 a k 3  d ( m1)1a k  4  ...  d ( m1) m a 2 k 1  0
320
a1
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
(e( m1)( m1)  f ( m1)( m1) )a1  s(a2  a3  ...  a2 k 1 )  r( m1) m a2  ...  r( m1)1ak 1  b( m1)1ak
 b( m1) 2 ak 1  b( m1)3 ak  2  b( m1) 4 ak 3  d ( m1)1ak  4  ...  d ( m1) m a2 k 1  0
According to the definition of our variables (see (4)) we have
r( m1)( m1)  d ( m1)( m1)  (k  1) s  r( m1) m  r( m1)( m1)  ...  r( m1)1  b( m1)1
 b( m1) 2  b( m1)3  b( m1) 4  d ( m1)1  ...  d ( m1) m
e( m1)( m1)  f ( m1)( m1)  r( m1) m  ...  r( m1)1  b( m1)1  b( m1) 2  b( m1)3  b( m1) 4
 d ( m1)1  ...  d ( m1) m  (k  1) s
a2  a3  ...  a2k 1 
2q
 2a1
s
According to the definition of f ( m1)( m1) and d ( m1)( m1) we obtain the following linear system
((k  1) s  r( m1) m  ...  r( m1)1  b( m1)1  b( m1) 2  b( m1)3  b( m1) 4  d ( m1)1  ...  d ( m1) m )a1
 r( m1) m a 2  ...  r( m1)1 a k 1  b( m1)1 a k  b( m1) 2 a k 1  b( m1)3 a k  2  b( m1) 4 a k 3
 d ( m1)1 a k  4  ...  d ( m1) m a 2 k 1  0
(r( m1) m  ...  r( m1)1  b( m1)1  b( m1) 2  b( m1)3  b( m1) 4  d ( m1)1  ...  d ( m1) m  (k  1) s)a1
 r( m1) m a 2  ...  r( m1)1 a k 1  b( m1)1 a k  b( m1) 2 a k 1  b( m1)3 a k  2  b( m1) 4 a k 3
 d ( m1)1 a k  4  ...  d ( m1) m a 2 k 1  0
We recognize that one equation is redundant. We substitute the values of
a 2 , …, a 2 k 1 and obtain the following
equation:
k 1
(ks  r( m1) m  ...  r( m1)1  b( m1)1  b( m1) 2  b( m1)3  b( m1) 4  d ( m1)1  ...  d ( m1) m )a1
k
 (r( m1) m x1  ...  r( m1)1 xk 2  b( m1)1 xk 1  b( m1) 2 xk  b( m1)3 xk 1  b( m1) 4 xk  2 
d ( m1)1 xk 3  ...  d ( m1) m x2 k ) z  0
We can say using a similar argument to the one used in the proof of proposition 1
a1   k 1 z
In analogy to that proof we are done.
Remark: We note that the sum of all entries of any vector in the subspace is zero.
We turn our attention now to the squares, which have a pandiagonal magic square 6 by 6 of the special structure
in the centre. We can prove very similar results for this type of squares like the results for multi-nested squares with
4 by 4 square in the centre.
Proposition 3: The nested semi magic square 8 by 8 with a 6 by 6 pandiagonal square has the following space
321
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
 1




 
x  1 
 1 3 

 
x  1 
 2 3 

 
x  1 
 3 3 
{z 
 : z  R}
 

1
  x1  3 


 

1
  x2  
3 

 

  x3  1 
3 



 1

as a subspace of the nullspace of the square.
Proof: We search for real numbers a1 ,... , a8 such that
a1  C1  ...  a8  C8  0
where the capital letters denote the columns of the matrix. We set
and
a1  a8
q  sa1 . We set
 a2 
 x1





1
a 
x

 
 3
 2 
1
a 
x

1
q
4
3

  z

 , z  R
a 
  x  3s 1
5
1




1
a 
 x 
 
2
1
 6

 
 x 
a 
3

 7
where z is an unknown real number. Now, the expression
a1  C1  ...  a8  C8
is the result of matrix multiplication of the square with the vector
 a1

 a2
a
 3
 a4

 a5
 a6

 a7
a
 8













The result of this operation will be according to our choice a vector which has the following middle entries
 u11a1   

 
u a   
 21 1  
u a   
 31 1   
u a   
 41 1  
u a   
 51 1  
u a   
 61 1  
sa   sa  u a 
11 1 
1  1
sa   sa  u a 
21 1 
1  1
sa   sa  u a 
31 1 
1  1

sa   sa  u a 
41 1 
1  1
sa   sa  u a 
51 1 
1  1
sa   sa  u a 
1  1
61 1 
Hence, the middle entries are zero and we have to equate the first and last entry of the vector to zero. We will use
this requirement to determine the values of a1 and z. Thus, we solve the following two equations:
p11a1  v11a2  v12a3  v13a4  v14a5  v15a6  v16a7  r11a1  0
322
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
w
a  (s  v
)a  ( s  v
)a  ( s  v
)a  ( s  v
)a 
11 1
11
2
12
3
13
4
14
5
(s  v
)a  ( s  v
)a  t
a  0
15
6
16
7
11 1
This system can be simplified to
( p11r11 )a1  v11a 2  v12 a3  v13a 4  v14 a5  v15 a6  v16 a7  0
(w
t
)a  s(a  a  a  a  a  a )  v a  v a 
11
11 1
2
3
4
5
6
7
11 2
12 3
v a v a v a v a 0
13 4
14 5
15 6
16 7
According to the definition of the variables we have
p11  r11  4s  v11  v12  v13  v14  v15  v16
w11  t11  v11  v12  v13  v14  v15  v16  2s
a
2
2q
a a a a a 
 2a
3
4
5
6
7
1
s
Note that we used the sign properties of the vectors belonging to the nullspace of the 6 by 6 square. Upon using the
last relations we convert the system into
(4s  v11  v12  v13  v14  v15  v16 )a1  v11a2  v12 a3  v13a4  v14 a5  v15a6  v16 a7  0
(v11  v12  v13  v14  v15  v16  4s)a1  v11a2  v12 a3  v13a4  v14 a5  v15a6  v16 a7  0
We recognize that one equation is redundant. We substitute the values of
a 2 , a 3 , a 4 , a 5 , a 6 and a 7 . Then, we
obtain from the last equation
4
(3s  v11  v12  v13  v14  v15  v16 )a1  (v11 x1  v12 x 2  v13 x 3  v14 x1  v15 x 2  v16 x 3 ) z  0
3
If the coefficient of
a1 is not zero, then we conclude that
a1  1 z
Upon substituting this value for
that
a1 we are done with the proof. If the coefficient of a1 is zero, then we conclude
a1 can be any number, while z might be zero. In this case we can say
a1  1u, 1  1, u  R
and we have the proof done with u instead of z.
Remark: 1) We note that the sum of all entries of any vector in the subspace is zero.
2) When we consider the following numerical example for a nested semi magic square 8 by 8
8
6
2
5
3
0
1
–17
2
1
0
1
–2
1
5
0
4
2
0
3
1
2
–2
–2
0
0
1
1
4
–2
2
2
1
4
1
–3
1
2
1
1
We obtain the following reduced row echelon form
323
3
1
0
4
0
2
–1
–1
7
–2
4
0
2
1
1
–5
–17
–4
0
–3
–1
2
1
30
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
1

0

0

0


0

0


0

0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
1 
37 
21 
463 


63 
65 
63 
17 

7 
505 
63 
23 


63 
0 

Hence, the nullity of the square is one. Therefore, the described subspace in proposition 3 is actually the nullspace of
the square.
Proposition 4: The nested semi magic square 2n by 2n with a 6 by 6 pandiagonal square has the following space
 n  3





n  3



n 1
 n4



n  4 n  3




n

5


n2
n 1
.



.

.




n  3 
 2 3

 ... 
 

4
5
n 1
 1






 x  1  2  ...  n  3

4
n 1
 1 3


n  3 
1  2
x 


 ... 
 2

3
4
n 1





 x  1  2  ...  n  3 
 3

3
4
n 1
{z 
 : z  R}
  x  1   2  ...   n  3 
 1 3
4
n 1 






n3 
1
2
  x2  3  4  ...  n  1 


n  3 
1  2

.

x



...



3
3
4
n 1 

n  3 
 2 3


 ... 
 1 

4
5
n 1


.



.

.



n  4 n  3


 n  5  n  2  n  1






n3
 n  4 

n 1




 n3

as a subspace of the nullspace of the square for all
n  4.
Proof: We will use mathematical induction in our proof. We start with
Basis step: when n  4 we obtain the semi magic square 8 by 8, which has according to proposition 3 a subspace
as claimed.
We continue now with
324
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
n k
Induction step: we suppose that the given form of the nullspace is true for
the nullspace of the multi-nested square
2k by 2 k
, i.e. there exists a subspace of
, which has the following structure
k 3




 k 3
k 1
 k 4

k  4 k 3



 k 5
k 2
k 1
.

.

.




   2  3  ...  k  3
1
4
5
k 1


k 3
1  2
y

 1

x 

 ... 
y

 1
3
4
k 1
 2





.

 x  1  2  ...  k  3


 2
3
4
k 1
.





.


k 3
1
2


 x3  3  4  ...  k  1
 yk
  z 

1  2




 ...  k  3
 yk 1 
  x1 
3
4
k 1



k 3
1  2
.



 ... 
.

  x2 
3
4
k 1



.



k 3
1  2
y

.  x 

 ... 
3
3
4
k 1
 2k 


k 3
 2 3
 

 ... 
 1
4
5
k 1
.

.
.





 k 4  k 3
k

5
k 2
k 1


k  3


k 1
 k 4

 k 3



















































We construct now a subspace of the nullspace of the multi-nested square
,zR
2k  2 by 2 k  2 .
We search for
a1 ,... , a2 k 2 such that the following relation holds
a1  C1  ...  a2k 2  C2k  2  0
where the capital letters denote the columns of the square. We choose
 a2

a
 3
a
 4
.
.

.
a
 2k

y

 1

y

 1
2



 

 .
 1

 
 1
.



 

 .
. 
 q 
 
  . 
  z  yk
 ks  . 
 
  yk  1 
 

 
 1

 .
 1

 1  .
 
 

 1
.

y

 2k 
325
a1  a2 k  2 , q  sa1 . We choose further
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
Since the statement of the proposition holds for
nested
2k by 2 k
n k
square inside the multi-nested square
each entry is equal to
we conclude that the multiplication of the multi-
2k  2 by 2 k  2
by this vector yields a vector, where
q . Hence, the multiplication of the multi-nested square 2k  2 by 2 k  2
by
 a1 


a

2


 a3 


.
)
.



.



a
 2k  2 


yields
 p m ( m 1) a1 
 sa

   sa1   1
  sa1
 p ( m 1)( m 1) a1  

   sa1  
 .
.
 .
 .
.
 
 

 .
 .
.
 .
 
p
 
a
sa
 1( m 1) 1
   sa1   1
 u1( m 1) a1
   sa   sa1
1

 

 u 2 ( m 1) a1
   sa1   sa1
 

 
 u 3( m 1) a1
    sa1    sa1
 u 4 ( m 1) a1
   sa1   sa1
 

 
 u 5( m 1) a1
   sa1   sa1

   sa  
1
 u 6 ( m 1) a1
 
 sa1
  sa1  
w

a
  sa1
 1( m 1) 1
 
 .
.
 .
 

 .
 .
.
 
.

 .
.


   sa  
1
sa
 w( m 1)( m 1) a1  
  1

sa
w


1

 m ( m 1) a1 
 sa1
 p m ( m 1) a1


 p ( m 1)( m 1) a1 






 p1( m 1) a1


 u1( m 1) a1

 u 2 ( m 1) a1


 u 3( m 1) a1


 u 4 ( m 1) a1

 u 5( m 1) a1


 u 6 ( m 1) a1


 w1( m 1) a1






 w( m 1)( m 1) a1 
 wm ( m 1) a1 
All the entries are zero except the first and last entry. We will use this requirement to determine z and
obtain therefore the following equations
p( m1)( m1) a1  p( m1) m a2  ... p( m1)1ak 2  v( m1)1ak 1  v( m1) 2 ak  v( m1)3 ak 1
 v( m1) 4 ak 2  v( m1)5 ak 3  v( m1)6 ak 4  r( m1)1ak 5  ... r( m1)( m1) a1  0
w( m1)( m1) a1  ( s  p( m1) m )a 2  ...  ( s  p( m1)1 )a k 2  ( s  v( m1)1 )a k 1  ( s  v( m1) 2 )a k
 ( s  v( m1)3 )a k 1  ( s  v( m1) 4 )a k  2  ( s  v( m1)5 )a k 3  ( s  v( m1)6 )a k  4 
( s  r( m1)1 )a k 5  ...  t ( m1)( m1) a1  0
This linear system can be simplified to
( p( m1)( m1)  r( m1)( m1) )a1  p ( m1) m a 2  ...  p ( m1)1 a k 2  v( m1)1 a k 1  v( m1) 2 a k  v( m1)3 a k 1
 v( m1) 4 a k  2  v( m1)5 a k 3  v( m1) 6 a k  4  r( m1)1 a k 5  ...  r( m1) m a 2 k 1  0
326
a1 . We
IJRRAS 8 (3) ● September 2011
ElShokry & Al-Ashhab ● The Nullspace of Nested Magic Squares
( w( m 1)( m 1)  t ( m 1)( m 1) )a1  s(a 2  a 3  ...  a 2 k 1 )  p ( m 1) m a 2  ...  p ( m 1)1 a k  2  v ( m 1)1 a k 1
 v ( m 1) 2 a k  v ( m 1)3 a k 1  v ( m 1) 4 a k  2  v ( m 1)5 a k 3  v ( m 1) 6 a k  4  r( m 1)1 a k 5
 ...  r( m 1) m a 2 k 1  0
According to the definition of our variables we have
p( m1)( m1)  r( m1)( m1)  (k  1) s  p( m1) m  p( m1)( m1)  ...  p( m1)1  v( m1)1
 v( m1) 2  v( m1)3  v( m1) 4  v( m1)5  v( m1) 6  r( m1)1  ...  r( m1) m
w( m1)( m1)  t ( m1)( m1)  p( m1) m  ...  p( m1)1  v( m1)1  v( m1) 2  v( m1)3  v( m1) 4
 v( m1)5  v( m1) 6  r( m1)1  ...  r( m1) m  (k  1) s
a 2  a3  ...  a 2 k 1 
2q
 2a1
s
According to the definition of r( m1)( m1) and t ( m1)( m1) we obtain the following linear system
((k  1) s  p( m1) m  ...  p( m1)1  v( m1)1  v( m1) 2  v( m1) 3  v( m1) 4  v( m1) 5  v( m1) 6
 r( m1)1  ...  r( m1) m )a1  p( m1) m a 2  ...  p( m1)1 a k  2  v( m1)1a k 1  v( m1) 2 a k  v( m1) 3 a k 1
 v( m1) 4 a k  2  v( m1) 5 a k 3  v( m1) 6 a k  4  r( m1)1a k 5  ...  r( m1) m a 2 k 1  0
( p ( m 1) m  ...  p ( m 1)1  v( m1)1  v( m 1) 2  v( m1)3  v( m 1) 4  v( m1)5  v( m 1) 6  r( m 1)1
 ...  r( m 1) m  (k  1) s)a1  p ( m 1) m a 2  ...  p ( m 1)1 a k  2  v( m1)1 a k 1  v( m1) 2 a k
 v( m 1)3 a k 1  v( m 1) 4 a k  2  v( m1)5 a k 3  v( m1) 6 a k  4  r( m1)1 a k 5  ...  r( m1) m a 2 k 1  0
We recognize that one equation is redundant. We substitute the values of a 2 , …,
a 2 k 1 and obtain the following
equation
k 1
(ks  p( m 1) m  ...  p ( m 1)1  v( m 1)1  v( m 1) 2  v( m 1)3  v( m 1) 4  v( m 1) 5  v( m1) 6
k
 r( m 1)1  ...  r( m 1) m )a1  ( p ( m 1) m y1  ...  p ( m 1)1 y k 3  v( m 1)1 y k  2  v( m 1) 2 y k 1  v( m 1) 3 y k
 v( m 1) 4 y k 1  v( m 1)5 y k  2  v( m1) 6 y k 3  r( m 1)1 y k  4  ...  r( m1) m y 2 k ) z  0
We can say using a similar argument to the one in the proof of proposition 3
a1   k 1 z
In analogy to that proof we are done.
ACKNOWLEDGMENT
This paper is extracted from a Msc. Thesis by Ayoub ElShokry (supervised by Saleem Al-Ashhab) at Al-Albayt
University in 2007
REFERENCES
[1]. Al-Ashhab, S., Computer Solutions of Magic 44 Squares and Semi – Magic 44 Squares Problem , Dirasat,
Natural and Engineering Sciences, Vol. , 25 , No , 3 , 1998 , pp . (445-450).
[2]. Al-Ashhab, S., Theory of Magic Squares / Programming and Mathematics, Royal Scientific Society, Jordan,
2000 (in Arabic).
[3]. Anton, H., Elementary Linear Algebra, 7th edition, Jon Wiley, New York, 1994.
[4]. Rosser, B. & Walker, R., J., On the Transformation Group for Diabolic Magic Squares of Order Four, Amer.
Math. Soc., Bult XLIV, 1938, pp. 416-420.
[5]. Trenkler, D. & Trenkler, G., Magic Squares, Melancholy and The Moore-Penrose Inverse, The Bulletin of
The International Linear Algebra Society, No.27 , 2001, pp (3-10).
327
Related documents