Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Fen Edebiyat Fakültesi Matematik Bölümü Introduction to Cryptography (Şifrelemeye Giriş) Final Exam (Final Sınav Soruları) Güz Yarıyılı-2013-2014 Instructor: Prof. Dr. İrfan ŞİAP Question: Grade: 1 2 3 4 Student’s 5 Total Name Surname: Number: Show your work to get full credit. Time is 90 minutes. Good luck. 1. a. Solve the congruence x11 2(mod 41) b. Compute ( (1905)) a. (11, 40) 1 and 11 11 3 40 1 3 40 x x1111 ( x11 )11 ( x40 )3 211 39(mod 41) b. ( (1905)) ( (3 5 127)) (2 4 126) (24 32 7) 8 6 6 288 2. a. b. Assume that Alice publishes her RSA public key: N 33 , e 3 . Encrypt the message “L&M” and find the ciphertext. Assume that Oscar obtained the ciphertext “SIL”Help him to find the plaintext. a)) “L & M” 14 | 29 |15 Therefore 143 5 (mod33), 293 2 (mod33), 153 9 (mod33) Hence the ciphertext is “ECH” b)) N 3 11 Therefore we can find the decryption key d wchich is ed 1 (mod ( N )) . Since (33) 2 10 20 the decryption key d is 7. SIL 21|10 |14 217 21 (mod33), 107 10 (mod33), 147 20 (mod33) Thus the plaintext is “SIR” 3. Show that 159991 is not a prime number. (Hint: Use difference of squares method.) b. Show that a 2 is a Rabin-Miller witness for (the compositeness of) n 49. a. 159991 12 15999 159991 22 159995 So 159991 4002 32 (397)(403) is not a prime number. 159991 32 160000 n 1 48 24 3 23 8 1 (mod 49) 22 3 8 1 (mod 49) 0 b)) 22 3 15 1 (mod 49) 1 22 3 29 1 (mod 49) 2 22 3 8 1 (mod 49) Therefore 2 is a Rabin Miller witness for the compositeness of n 49. 3 4. Use the data provided to find values of a and b satisfying a2 b2 (mod N ) by illustrating linear equation system and then compute gcd( N , a b) in order to find a nontrivial factor of N . N 16873 13002 2700 (mod16873) and 2700 22 33 52 50032 7350 (mod16873) and 7350 2 3 52 7 2 31502 1176 (mod16873) and 1176 23 3 7 2 0 1 1 0 u1 1 1 1 u 0 0 0 0 2 0 u3 0 0 0 0 1 0 0 0 u1 0 1 1 u 0 0 0 0 2 0 u3 0 0 0 0 (0,1,1) is a nontrivial solution. So it gives a congruence a 2 b2 (mod 16873) that has the potential to provide a factorization of 16873. It says that if we multiply the 2nd and 3rd numbers in the list we will get a square, indeed 50032 31502 (2 3 52 7 2 )(23 3 7 2 ) (mod 16873) (2 2 3 5 7 2 ) 2 2940 2 Next we compute gcd(16873,5003 3150 2940) gcd(16873,15756510) 359 Therefore 359 |16873 . 5. Determine whether the following numbers are quadratic residue in the given modulus by using Legendre symbol. a) 102 in modulo 37. b) 41 in modulo 163. c) -23 in modulo 83. d) Write down all quadratic residues and nonresidues in modulo 17. 2 102 28 2 7 7 37 2 a)) 1 So 102 is QR 37 37 37 37 37 7 7 41 163 1 b)) 1 So 41 is QR 163 41 41 23 60 2 3 5 3 5 83 83 2 3 c)) 1 83 83 83 83 83 83 83 3 5 3 5 So -23 is NR 2 12 1 22 4 32 9 4 2 16 d)) 52 8 So QR 1, 2, 4,8,9,13,15,16 and NR 3,5,6,7,10,11,12,14 62 2 7 2 15 82 13 Appendix: Correspondece between Turkish alphabet and 33 A B C Ç D E F G Ğ H I İ J K L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 M N O Ö P R S Ş T U Ü V Y Z & 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29