Download Mühendislik Fakültesi Diferansiyel Denklemler Vize Sınav

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fen Edebiyat Fakültesi Matematik Bölümü
Introduction to Cryptography (Şifrelemeye Giriş)
Final Exam (Final Sınav Soruları) Güz Yarıyılı-2013-2014
Instructor: Prof. Dr. İrfan ŞİAP
Question:
Grade:
1
2
3
4
Student’s
5
Total
Name Surname:
Number:
Show your work to get full credit. Time is 90 minutes. Good luck.
1.
a.
Solve the congruence x11  2(mod 41)
b.
Compute  ( (1905))
a. (11, 40)  1 and 11 11  3  40  1
 3 40
x  x1111
 ( x11 )11 ( x40 )3  211  39(mod 41)
b.  ( (1905))   ( (3  5  127))   (2  4  126)   (24  32  7)  8  6  6  288
2.
a.
b.
Assume that Alice publishes her RSA public key: N  33 , e  3 .
Encrypt the message “L&M” and find the ciphertext.
Assume that Oscar obtained the ciphertext “SIL”Help him to find the plaintext.
a)) “L & M”  14 | 29 |15 Therefore
143  5 (mod33), 293  2 (mod33), 153  9 (mod33) Hence the ciphertext is “ECH”
b)) N  3  11 Therefore we can find the decryption key d wchich is ed  1 (mod  ( N )) .
Since  (33)  2  10  20 the decryption key d is 7.
SIL  21|10 |14
217  21 (mod33), 107  10 (mod33), 147  20 (mod33)
Thus the plaintext is “SIR”
3.
Show that 159991 is not a prime number. (Hint: Use difference of squares
method.)
b.
Show that a  2 is a Rabin-Miller witness for (the compositeness of) n  49.
a.
159991  12  15999
159991  22  159995 So 159991  4002  32  (397)(403) is not a prime number.
159991  32  160000
n  1  48  24  3
23  8  1 (mod 49)
22 3  8  1 (mod 49)
0
b))
22 3  15  1 (mod 49)
1
22 3  29  1 (mod 49)
2
22 3  8  1 (mod 49)
Therefore 2 is a Rabin Miller witness for the compositeness of n  49.
3
4. Use the data provided to find values of a and b satisfying a2  b2 (mod N ) by illustrating
linear equation system and then compute gcd( N , a  b) in order to find a nontrivial factor
of N .
N  16873
13002  2700 (mod16873) and 2700  22  33  52
50032  7350 (mod16873) and 7350  2  3  52  7 2
31502  1176 (mod16873) and 1176  23  3  7 2
 0 1 1
 0

  u1   
 1 1 1 u    0
 0 0 0   2   0 

  u3   
 0 0 0
 0
 1 0 0
 0

  u1   
 0 1 1 u    0
 0 0 0   2   0 

  u3   
 0 0 0
 0
(0,1,1) is a nontrivial solution. So it gives a congruence a 2  b2 (mod 16873) that
has the potential to provide a factorization of 16873. It says that if we multiply the
2nd and 3rd numbers in the list we will get a square, indeed
50032  31502  (2  3  52  7 2 )(23  3  7 2 ) (mod 16873)
 (2 2  3  5  7 2 ) 2  2940 2
Next we compute
gcd(16873,5003  3150  2940)  gcd(16873,15756510)  359
Therefore 359 |16873 .
5.
Determine whether the following numbers are quadratic residue in the given
modulus by using Legendre symbol.
a) 102 in modulo 37.
b) 41 in modulo 163.
c) -23 in modulo 83.
d) Write down all quadratic residues and nonresidues in modulo 17.
2
 102   28   2   7   7   37   2 
a)) 
                   1 So 102 is QR
 37   37   37   37   37   7   7 
 41   163   1 
b)) 

     1 So 41 is QR
 163   41   41 
 23   60   2   3   5   3   5 
 83   83 
 2  3
c)) 
                             1
 83   83   83   83   83   83   83 
 3  5 
 3  5 
So -23 is NR
2
12  1
22  4
32  9
4 2  16
d))
52  8
So QR  1, 2, 4,8,9,13,15,16 and NR  3,5,6,7,10,11,12,14
62  2
7 2  15
82  13
Appendix: Correspondece between Turkish alphabet and
33
A
B
C
Ç
D
E
F
G
Ğ
H
I
İ
J
K
L
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
M
N
O
Ö
P
R
S
Ş
T
U
Ü
V
Y
Z
&
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Related documents