Download Triangle de signalisation

Document related concepts
no text concepts found
Transcript
Triangle de signalisation
1
ANALYSE DU SYSTEME MIXTE ...................................................................................................................................2
1.1
1.2
EXPRESSION DU BESOIN ..................................................................................................................................................2
DIAGRAMME SAGITTAL ...................................................................................................................................................2
2
PRESENTATION DE L'OBJET TECHNIQUE 1............................................................................................................2
3
ANALYSE FONCTIONNELLE DU TRIANGLE DE SIGNALISATION LUMINEUX .............................................3
3.1
ETUDE FONCTIONNELLE ..................................................................................................................................................3
3.1.1
Fonction d'usage ....................................................................................................................................................3
3.1.2
Schéma fonctionnel de niveau 2 .............................................................................................................................3
3.1.3
Etude des milieux associés à l'objet technique1 .....................................................................................................3
a)
b)
c)
d)
Milieu humain:...............................................................................................................................................................................3
Milieu physique: ............................................................................................................................................................................3
Milieu économique: .......................................................................................................................................................................3
Milieu technique: ...........................................................................................................................................................................3
3.2
ETUDE FONCTIONNELLE DE 1ER DEGRE...........................................................................................................................4
3.2.1
SCHEMA FONCTIONNEL DE 1er DEGRE .........................................................................................................4
3.3
ETUDE FONCTIONNELLE DE 2ND DEGRE ..........................................................................................................................5
3.3.1
Schéma fonctionnel de degré 2...............................................................................................................................5
3.3.2
Définition des entrées/sorties .................................................................................................................................6
4
ETUDE STRUCTURELLE ................................................................................................................................................7
4.1
4.2
4.3
5
SCHEMA STRUCTUREL.....................................................................................................................................................7
NOMENCLATURE .............................................................................................................................................................8
DOCUMENTS DE FABRICATION ........................................................................................................................................9
DOCUMENTATION TECHNIQUE................................................................................................................................10
RT 28/01/06
triangle.doc
-1-
1 Analyse du système mixte
1.1 Expression du besoin
Lors de travaux sur la chaussée, les usagers de la route doivent être avertis du chantier qu'ils vont rencontrer, afin
qu'ils limitent leur vitesse et qu'ils ne soient pas surpris par l'encombrement de la route.
Une signalisation lumineuse avertira l'automobiliste de plus loin et attirera plus fortement son attention.
1.2 Diagramme sagittal
information M/A
et choix du motif
usagers de
la route
triangle de signalisation
lumineux
information lumineuse
signalant un chantier
visualisation
ouvrier de
chantier
O.T.1
info.
J/N
info.
12V/24V
environnement
batterie de véhicule
O.T.2
2 Présentation de l'objet technique 1
RT 28/01/06
triangle.doc
-2-
3 Analyse fonctionnelle du triangle de signalisation lumineux
3.1
Etude fonctionnelle
3.1.1
Fonction d'usage
Le triangle de signalisation lumineux réalise les fonctions suivantes:
• Élaborer une commande d'allumage des lampes en fonction du motif choisit, de la luminosité de
l'environnement et du type de batterie.
• Signaler de façon lumineuse un éventuel chantier aux usagers de la route.
3.1.2
Schéma fonctionnel de niveau 2
info.M/A
élaboration d'une cmde
choix du motif
d'allumage des lampes
ouvrier
3.1.3
usagers de
la route
O.T.1
Simplicité d'utilisation.
Détermination du motif effectué en usine, en accord avec le client.
Diminution de l'intensité lumineuse la nuit pour éviter les éblouissements.
Milieu physique:
•
•
L'électronique étant logée dans la carcasse du triangle, il en résulte des contraintes dues à l'environnement
thermique (température ambiante avoisinant 60°C en été).
Électronique enrobée de résine et protégée contre les courts-circuits.
Résistant aux chocs.
Milieu économique:
•
•
•
Reconnaissance et adaptation automatique au type de batterie 12V ou 24V.
Motif lumineux facilement modifiable à la commande.
Faible coût de revient.
Milieu technique:
•
•
RT 28/01/06
lumineuse
Milieu humain:
•
d)
info.
Etude des milieux associés à l'objet technique1
•
•
•
c)
lumineuse
information 12V/24V
batterie
b)
des lampes
signalisation
info. J/N
environnement
a)
cmde d'allumage
ouvrier
de chantier
Source d'énergie = batterie 12V ou 24V.
Lampe à iode 12V/55W uniquement.
triangle.doc
-3-
3.2
Etude fonctionnelle de 1er degré
3.2.1 SCHEMA FONCTIONNEL DE 1er DEGRE
info. 12V/24V
identification du
information 12V / 24V
type de batterie
F.P.3
captage
info. J/N
information J/N
jour / nuit
F.P.4
3
choix d'un motif parmi 8
élaboration de la
commande d'allumage
des lampes
F.P.1
commande d'allumage
signalisation
lumineuse
des lampes
information
lumineuse
F.P.2
O.T.1
RT 28/01/06
triangle.doc
-4-
3.3 Etude fonctionnelle de 2nd degré
3.3.1 Schéma fonctionnel de degré 2
Choix d'un motif parmi 8
info J/N
A12-A13-A14
captage J/N
3
mémorisation
A10
J/N
S0
de commande
énergie
électrique
12V/24V
S0'
des informations
F.S.4.1
identification
de la tension BAT A11
12V ou 24V
protection contre les inversions
VA
de polarité et détection du niveau
de charge de la batterie
F.S.3.1
production d'un
signal rectangulaire
h
amplification
de puissance
S1
S1'
des lampes
F.S.2.1
F.S.3.2
Production
d’adresses
F.S.1.1
A0-A9 10
F.S.1.2
F.S.1.3
R.A.Z
VA
Vo
F.a
RT 28/01/06
triangle.doc
-5-
conversion
énergie électrique/
énergie lumineuse
F.S.2.2
information
lumineuse
3.3.2 Définition des entrées/sorties
info.J/N
: Information : intensité lumineuse ambiante.
J/N (A10) : Information logique relative à l'éclairement ambiant.
E.E (12V/24V) : tension de batterie alimentant le triangle pouvant atteindre 14,5V pour une batterie de
12V et 28V pour une batterie de 24V.
VA: tension d'alimentation provenant de la batterie.
BAT (A11): information logique pour la détection d'une batterie de 12V ou 24V.
Vo : tension régulée à 5V permettant d'alimenter les circuits logiques.
A12, A13, A14: Information numérique: mot binaire de 3 bits qui permet la sélection d'un motif parmi 8.
A14
0
0
0
0
1
1
1
1
A13
0
0
1
1
0
0
1
1
A12
0
1
0
1
0
1
0
1
motifs
Modèle A
Modèle B ou C
Non utilisé
Non utilisé
Non utilisé
Non utilisé
Non utilisé
Non utilisable Identification mémoire
h : ddp rectangulaire d'amplitude (0;5V).
A0 à A9 : Information numérique: mot binaire de 10 bits. Chaque mot correspond à une case mémoire qui
renferme un nombre binaire de 8 bits. Le balayage des combinaisons $000 à $3FF détermine la période
d'allumage et de découpage des lampes.
S0 : Information logique qui commande l'allumage des lampes L1, L2, L3. S0 est une valeur mémorisée
et correspond au bit de poids faible de l'octet.
Lors du balayage des combinaisons des adresses A0 à A9, le niveau logique en S0 détermine
l'allumage et l'intensité lumineuse des lampes L1, L2, L3.
RAZ : Information logique permet la remise à zéro du nombre (A9…A0)2 .
RT 28/01/06
triangle.doc
-6-
4 Etude structurelle
4.1 Schéma structurel
11 RST
10
RT 28/01/06
triangle.doc
f
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
9
7
6
5
3
2
4
13
12
14
15
1
-7-
4.2 Nomenclature
RT 28/01/06
RefDes
Type
Value
-------------------- -------------------- ---------------
RefDes
Type
Value
-------------------- -------------------- ---------------
C1
C2
C3
C4
C5
C6
C7
C8
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11
J12
J13
L1
L2
L3
P1
P2
R1
R2
R3
R4
R5
R6
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
S1
S2
S3
T1
T2
T3
T4
U1
U2
U3
U4
U5
U6
C2
C2
C1
C2_POL
C2_POL
C2_POL
C2
C2
1N4148
1N4148
ZENER12V
1N4148
ZENER9.1V
ZENER9.1V
1N4001
ZENER4.7V
ZENER9.1V
ZENER4.7V
BORNE1
BORNE1
DOUILLE4
DOUILLE4
PTEST
PTEST
PTEST
PTEST
PTEST
PTEST
PTEST
BORNE1
BORNE1
LAMPE
LAMPE
LAMPE
POT3T
POT3T
R1
R1
R1
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R1
R2
INVERSEUR
INVERSEUR
INVERSEUR
10n
22u
22n
100u
1u
1u
100n
100n
12v
BC548A
SFH309
BC548A
BC558B
CD4093BCN
HCC4040BF
IRF540
ZVP2106A
HN58C256
78L05
9.1V
9.1V
4.7V
9.1V
4.7V
2.2Meg
470k
100K
0
100k
4.7k
1K
100k
100k
100k
100k
3.3k
1Meg
100K
22K
4.7K
4.7k
10k
3.3k
triangle.doc
-8-
4.3 Documents de fabrication
RT 25/01/06
triangle.doc
-9-
Triangles rabattables pour véhicules
Triangles pour véhicules symbole AK5
r : 500
LEDs Ø 60
Code
Référence
T1
T2
T1
T2
T1
T2
TML124/500T1
TML124/500T2
808562035
TML500ELECT1
808562036
TML500ELECT2
808564035
TUML124/500T1
808564036
TUML124/500T2
Moins value
XENON Ø 60
Relevage(1) Double
T1
face
manuel
T2
Relevage Double
T1
face
électrique
T2
Fixation
T1
simple
face
rail arrière
T2
Référence
TNX124/500T1
808500045
TNX124/500T2
808503
TNX500ELECT1
808503045
TNX500ELECT2
808506
TUX124/500T1
808506035
TUX124/500T2
Moins value
Relevage(1) Double
face
manuel
Relevage Double
face
électrique
Fixation
simple
face
rail arrière
Simple face TML500/700
Simple face TNX500/700
IODE Ø 60
Relevage(1) Double
face
manuel
Relevage Double
face
électrique
Fixation
rail arrière
simple
face
808560035
808560036
Code
808500
Code
T1
T2
T1
T2
T1
T2
808542
808542045
808548
808548045
808509
808509045
Simple face TMO500/700
Référence
TMO124/500T1
TMO124/500T2
TMO500ELECT1
TMO500ELECT2
TUMO124/500T1
TUMO124/500T2
Moins value
r : 700
Prix
389
431
678
719
281
302
-89
€�
€�
€�
€�
€�
€�
€�
Prix
427
469
791
832
317
338
-74
€�
€�
€�
€�
€�
€�
€�
Code
€�
€�
€�
€�
€�
€�
€�
Prix
474
562
793
882
366
410
-89
TML124/700T1
TML124/700T2
808563035
TML700ELECT1
808563036
TML700ELECT2
808565035
TUML124/700T1
808565036
TUML124/700T2
Moins value
808561035
808561036
€�
€�
€�
€�
€�
€�
€�
Jour
Nuit
12 V : 0,3 A
12 V : 0,15 A
24 V : 0,15 A 24 V : 0,07 A
12 V : 0,15 A 12 V : 0,07 A
24 V : 0,07 A 24 V : 0,04 A
Prix
Référence
TNX124/700T1
531 €�
808501045
TNX124/700T2
620 €�
808504
TNX700ELECT1
926 €�
808504045
TNX700ELECT2 1015 €�
808507
TUX124/700T1
412 €�
808507035
TUX124/700T2
456 €�
Moins value
-74 €�
Code
808501
Prix
294
335
657
698
291
312
-6
Consommation
Référence
Code
808543045
808549
808549045
808510
808510045
384
473
779
867
381
425
-6
Moins value
(1) Le kit de rabattement est à commander séparément
12 V : 0,8 A
24 V : 0,7 A
24 V : 0,4 A
12 V : 0,7 A
12 V : 0,4 A
24 V : 0,04 A
24 V : 0,2 A
12 V : 6,8 A
12 V : 3,4A
24 V : 3,4 A
24 V : 1,7A
12 V : 6,8 A
12 V : 3,4 A
24 V : 3,4 A
24 V : 1,7 A
Prix
Référence
TMO124/700T1
TMO124/700T2
TMO700ELECT1
TMO700ELECT2
TUMO124/700T1
TUMO124/700T2
808543
12 V : 1,4 A
€�
€�
€�
€�
€�
€�
€�
Accessoires
Code
inter avec voyant 12 V (10 A max)
812199
inter avec voyant 24 V (10 A max)
812197
prise allume-cigares
811400
kit de rabattement
809356
plaque de fixation r 500
809355
plaque de fixation r 700
809357
embase magnétique r 500
809613
embase magnétique r 700
809614
Référence
INT/VOY12
INT/VOY24
P/AC
K/RAB
FIX/TP500
FIX/TP700
MAG/TP500
MAG/TP700
Prix
12
12
8
23
21
28
63
73
€�
€�
€�
€�
€�
€�
€�
€�
SYMBOLES
AK2
AK3
AK4
AK5
AK14
AK17
AK22
AK30
AK31
• Film Diamond Grade fluo
• Symbole autre que AK5
• Triangles de dimensions 1000 mm
• Relevage électrique seul
• Triangles pendulaires pour camions bennes
Nous sommes à votre disposition pour étudier
toute fabrication particulière !
275, rue de Clermont - ZA la Vatine - F 60000 BEAUVAIS
Tél. : 03 44 10 33 90 - Fax : 03 44 10 33 99 - Email : [email protected] - www.franclair.com
Tarifs en Euros hors taxes - départ usine
Extrait du Catalogue 2005
MM54HC4020/MM74HC4020
14-Stage Binary Counter
MM54HC4040/MM74HC4040
12-Stage Binary Counter
General Description
The MM54HC4020/MM74HC4020, MM54HC4040/
MM74HC4040, are high speed binary ripple carry counters.
These counters are implemented utilizing advanced silicongate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high
noise immunity of CMOS.
The ’HC4020 is a 14 stage counter and the ’HC4040 is a 12stage counter. Both devices are incremented on the falling
edge (negative transition) of the input clock, and all their
outputs are reset to a low level by applying a logical high on
their reset input.
These devices are pin equivalent to the CD4020 and
CD4040 respectively. All inputs are protected from damage
due to static discharge by protection diodes to VCC and
ground.
Features
Y
Y
Y
Y
Y
Typical propagation delay: 16 ns
Wide operating voltage range: 2 – 6V
Low input current: 1 mA maximum
Low quiescent current: 80 mA maximum (74HC Series)
Output drive capability: 10 LS-TTL loads
Connection Diagrams
Dual-In-Line Packages
’HC4020
TL/F/5216 – 1
’HC4040
TL/F/5216 – 3
Order Number MM54HC4020/4040 or MM74HC4020/4040
C1995 National Semiconductor Corporation
TL/F/5216
RRD-B30M105/Printed in U. S. A.
MM54HC4020/MM74HC4020 14-Stage Binary Counter
MM54HC4040/MM74HC4040 12-Stage Binary Counter
December 1988
Absolute Maximum Ratings (Notes 1 & 2)
Operating Conditions
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (VCC)
Supply Voltage (VCC)
DC Input Voltage (VIN)
DC Output Voltage (VOUT)
Clamp Diode Current (ICD)
DC Output Current, per pin (IOUT)
DC VCC or GND Current, per pin (ICC)
Storage Temperature Range (TSTG)
Power Dissipation (PD)
(Note 3)
S.O. Package only
Lead Temperature (TL)
(Soldering 10 seconds)
DC Input or Output Voltage
(VIN, VOUT)
b 0.5 to a 7.0V
b 1.5 to VCC a 1.5V
Operating Temp. Range (TA)
MM74HC
MM54HC
b 0.5 to VCC a 0.5V
g 20 mA
Min
2
Max
6
0
VCC
Units
V
V
b 40
b 55
a 85
a 125
§C
§C
1000
500
400
ns
ns
ns
Input Rise or Fall Times
VCC e 2.0V
(tr, tf)
VCC e 4.5V
VCC e 6.0V
g 25 mA
g 50 mA
b 65§ C to a 150§ C
600 mW
500 mW
260§ C
DC Electrical Characteristics (Note 4)
Symbol
Parameter
Conditions
VCC
TA e 25§ C
Typ
74HC
TA eb40 to 85§ C
54HC
TA eb55 to 125§ C
Units
Guaranteed Limits
VIH
Minimum High Level Input
Voltage
2.0V
4.5V
6.0V
1.5
3.15
4.2
1.5
3.15
4.2
1.5
3.15
4.2
V
V
V
VIL
Maximum Low Level Input
Voltage**
2.0V
4.5V
6.0V
0.5
1.35
1.8
0.5
1.35
1.8
0.5
1.35
1.8
V
V
V
VOH
Minimum High Level Output
Voltage
VIN e VIH or VIL
lIOUTl s20 mA
2.0V
4.5V
6.0V
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
V
V
4.5V
6.0V
4.2
5.7
3.98
5.48
3.84
5.34
3.7
5.2
V
V
2.0V
4.5V
6.0V
0
0
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
V
V
VIN e VIH or VIL
lIOUTl s4.0 mA
lIOUTl s5.2 mA
4.5V
6.0V
0.2
0.2
.26
.26
0.33
0.33
0.4
0.4
V
V
VIN e VIH or VIL
lIOUTl s4.0 mA
lIOUTl s5.2 mA
VOL
Maximum Low Level Output
Voltage
VIN e VIH or VIL
lIOUTl s20 mA
IIN
Maximum Input Current
VIN e VCC or GND
6.0V
g 0.1
g 1.0
g 1.0
mA
ICC
Maximum Quiescent Supply
Current
VIN e VCC or GND
IOUT e 0 mA
6.0V
8.0
80
160
mA
Note 1: Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating Ð plastic ‘‘N’’ package: b 12 mW/§ C from 65§ C to 85§ C; ceramic ‘‘J’’ package: b 12 mW/§ C from 100§ C to 125§ C.
Note 4: For a power supply of 5V g 10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when
designing with this supply. Worst case VIH and VIL occur at VCC e 5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current (IIN,
ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used.
**VIL limits are currently tested at 20% of VCC. The above VIL specification (30% of VCC) will be implemented no later than Q1, CY’89.
2
AC Electrical Characteristics VCC e 5V, TA e 25§ C, CL e 15 pF, tr e tf e 6 ns
Symbol
Parameter
Conditions
Typ
Guaranteed
Limit
Units
50
30
MHz
17
35
ns
fMAX
Maximum Operating Frequency
tPHL, tPLH
Maximum Propagation
Delay Clock to Q
tPHL
Maximum Propagation
Delay Reset to any Q
16
40
ns
tREM
Minimum Reset
Removal Time
10
20
ns
tW
Minimum Pulse Width
10
16
ns
(Note 5)
AC Electrical Characteristics VCC e 2.0V to 6.0V, CL e 50 pF, tr e tf e 6 ns (unless otherwise specified)
Symbol
Parameter
Conditions
TA e 25§ C
VCC
Typ
74HC
TA eb40 to 85§ C
54HC
TA eb55 to 125§ C
Units
Guaranteed Limits
fMAX
Maximum Operating
Frequency
2.0V
4.5V
6.0V
10
40
50
6
30
35
5
24
28
4
20
24
MHz
MHz
MHz
tPHL, tPLH
Maximum Propagation
Delay Clock to Q1
2.0V
4.5V
6.0V
80
21
18
210
42
36
265
53
45
313
63
53
ns
ns
ns
TPHL, tPLH
Maximum Propagation
Delay Between Stages
from Qn to Qn a 1
2.0V
4.5V
6.0V
80
18
15
125
25
21
156
31
26
188
38
31
ns
ns
ns
tPHL
Maximum Propagation
Delay Reset to any Q
(’4020 and ’4040)
2.0V
4.5V
6.0V
72
24
20
240
48
41
302
60
51
358
72
61
ns
ns
ns
tREM
Minimum Reset
Removal Time
2.0V
4.5V
6.0V
100
20
16
126
25
21
149
50
25
ns
ns
ns
tW
Minimum Pulse Width
2.0V
4.5V
6.0V
90
16
14
100
20
18
120
24
20
ns
ns
ns
tTLH, tTHL
Maximum
Output Rise
and Fall Time
2.0V
4.5V
6.0V
75
15
13
95
19
16
110
22
19
ns
ns
ns
tr, tf
Maximum Input Rise and
Fall Time
1000
500
400
1000
500
400
1000
500
400
ns
ns
ns
CPD
Power Dissipation
Capacitance (Note 6)
CIN
Maximum Input
Capacitance
30
10
9
(per package)
55
5
pF
10
10
10
pF
Note 5: Typical Propagation delay time to any output can be calculated using: tP e 17 a 12(N–1) ns; where N is the number of the output, QW, at VCC e 5V.
Note 6: CPD determines the no load dynamic power consumption, PD e CPD VCC2 f a ICC VCC, and the no load dynamic current consumption, IS e CPD VCC f a ICC.
3
Logic Diagrams
MM54HC4020/MM74HC4020
TL/F/5216 – 5
MM54HC4040/MM74HC4040
TL/F/5216 – 7
4
TL/F/5216 – 11
Timing Diagram
5
Physical Dimensions inches (millimeters)
Order Number MM54HC4020J, MM54HC4024J, MM54HC4040J,
MM74HC4020J, MM74HC4024J, or MM74HC4040J
NS Package J14A
6
Physical Dimensions inches (millimeters) (Continued)
Order Number MM54HC4020J, MM54HC4024J, MM54HC4040J,
MM74HC4020J, MM74HC4024J, or MM74HC4040J
NS Package J16A
Order Number MM74HC4020N, MM74HC4024N or MM74HC4040N
NS Package N14A
7
MM54HC4020/MM74HC4020 14-Stage Binary Counter
MM54HC4040/MM74HC4040 12-Stage Binary Counter
Physical Dimensions inches (millimeters) (Continued)
Order Number MM74HC4020N, MM74HC4024N or MM74HC4040N
NS Package N16E
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.
National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
National Semiconductor
Europe
Fax: (a49) 0-180-530 85 86
Email: cnjwge @ tevm2.nsc.com
Deutsch Tel: (a49) 0-180-530 85 85
English Tel: (a49) 0-180-532 78 32
Fran3ais Tel: (a49) 0-180-532 93 58
Italiano Tel: (a49) 0-180-534 16 80
National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960
National Semiconductor
Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
Order this document by MCT7800/D
These voltage regulators are monolithic integrated circuits designed as
fixed-voltage regulators for a wide variety of applications including local,
on-card regulation. These regulators employ internal current limiting,
thermal shutdown, and safe-area compensation. With adequate heatsinking
they can deliver output currents in excess of 1.0 A. Although designed
primarily as fixed voltage regulators, these devices can be used with
external components to obtain adjustable voltages and currents.
• Output Current in Excess of 1.0 A
•
•
•
•
•
•
THREE-TERMINAL
POSITIVE FIXED
VOLTAGE REGULATORS
No External Components Required
Internal Thermal Overload Protection
T SUFFIX
PLASTIC PACKAGE
CASE 221A
Internal Short Circuit Current Limiting
Output Transistor Safe-Area Compensation
Output Voltage Offered with a 4% Tolerance
Available in Surface Mount D2PAK and Standard 3-Lead Transistor
Heatsink surface
connected to Pin 2.
1
Packages
2
3
Pin 1. Input
2. Ground
3. Output
D2T SUFFIX
PLASTIC PACKAGE
CASE 936
(D2PAK)
1
2
3
Heatsink surface (shown as terminal 4 in
case outline drawing) is connected to Pin 2.
This MCT-prefixed device is intended to be a possible replacement for the similar
device with the MC-prefix. Because the MCT device originates from different source
material, there may be subtle differences in typical parameter values or
characteristic curves. Due to the diversity of potential applications, Motorola can not
assure identical performance in all circuits. Motorola recommends that the
customer qualify the MCT-prefixed device in each potential application.
STANDARD APPLICATION
Input
Cin*
0.33 µF
DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
MCT7805
MCT7806
MCT7808
MCT7809
5.0 V
6.0 V
8.0 V
9.0 V
MCT7812
MCT7815
MCT7818
MCT7824
12 V
15 V
18 V
24 V
MCT78XX
Output
CO**
A common ground is required between the
input and the output voltages. The input voltage
must remain typically 2.0 V above the output
voltage even during the low point on the input
ripple voltage.
ORDERING INFORMATION
Device
Output Voltage
Tolerance
Tested Operating
Temperature Range
Package
Surface Mount
MCT78XXBD2T
TJ = – 40° to +125°C
MCT78XXBT
Insertion Mount
4%
Surface Mount
MCT78XXCD2T
MCT78XXCT
TJ = 0° to +125°C
Insertion Mount
XX, these two digits of the type number indicate
nominal voltage.
** Cin is required if regulator is located an
appreciable distance from power supply filter.
** Some CO is recommended for stability; it does
improve transient response. Values less than
0.1 µF could cause instability.
XX indicates nominal voltage.
 Motorola, Inc. 1994
MOTOROLA
Rev 3
MCT7800
1
MCT7800
MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.)
Rating
Symbol
Value
Unit
VI
35
Vdc
PD
θJA
θJC
Internally Limited
65
5.0
W
°C/W
°C/W
PD
θJA
θJC
Internally Limited
70
5.0
W
°C/W
°C/W
Tstg
– 65 to +150
°C
TJ
+150
°C
Input Voltage
Power Dissipation
Case 221A
TA = +25°C
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Case
Case 936 (D2PAK)
TA = +25°C
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Case
Storage Junction Temperature Range
Operating Junction Temperature
Representative Schematic Diagram
Input
100
100
100
10 k
500
240
200
0.3
Output
3.3 k
2.0 k
6.0 k
0.25 k
2.7 k
1.4 k
28 k
30 pF
5.0 k
500
6.0 k
1.0 k
5.0 k
Gnd
This device contains 19 active transistors.
MCT7800
2
MOTOROLA
MCT7800
ELECTRICAL CHARACTERISTICS (Vin = 10 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7805B
Characteristics
MCT7805C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
VO
4.8
5.0
5.2
4.8
5.0
5.2
Vdc
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
7.0 Vdc ≤ Vin ≤ 20 Vdc
8.0 Vdc ≤ Vin ≤ 20 Vdc
VO
—
4.75
—
5.0
—
5.25
4.75
—
5.0
—
5.25
—
—
—
7.0
2.0
100
50
—
—
7.0
2.0
100
50
—
—
2.0
1.5
100
50
—
—
2.0
1.5
100
50
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.3
0.5
—
—
—
—
—
—
1.3
—
0.5
—
65
—
—
65
—
—
2.0
—
—
2.0
—
—
10
—
—
10
—
—
1.3
—
—
1.3
—
—
0.2
—
—
0.2
—
Imax
—
2.2
—
—
2.2
—
A
TCVO
—
0.5
—
—
0.5
—
mV/°C
Line Regulation, TJ = +25°C (Note 2)
7.0 Vdc ≤ Vin ≤ 25 Vdc
8.0 Vdc ≤ Vin ≤ 12 Vdc
Regline
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ Vin ≤ 1.5 A
250 mA ≤ Vin ≤ 750 mA
Regload
Quiescent Current (TJ = +25°C)
IB
Quiescent Current Change
7.0 Vdc ≤ Vin ≤ 25 Vdc
8.0 Vdc ≤ Vin ≤ 25 Vdc
5.0 mA ≤ IO ≤ 1.0 A
∆IB
Ripple Rejection
8.0 Vdc ≤ Vin ≤ 18 Vdc, f = 120 Hz
RR
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
VI – VO
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
Vn
Output Resistance f = 1.0 kHz
rO
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
ISC
Peak Output Current (TJ = +25°C)
Average Temperature Coefficient of Output Voltage
Vdc
mV
mV
mA
mA
dB
Vdc
µV/VO
mΩ
A
ELECTRICAL CHARACTERISTICS (Vin = 11 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7806B
Characteristics
MCT7806C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
VO
5.75
6.0
6.25
5.75
6.0
6.25
Vdc
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
8.0 Vdc ≤ Vin ≤ 21 Vdc
9.0 Vdc ≤ Vin ≤ 21 Vdc
VO
—
5.7
—
6.0
—
6.3
5.7
—
6.0
—
6.3
—
—
—
7.0
2.0
120
60
—
—
7.0
2.0
120
60
—
—
2.0
1.5
120
60
—
—
2.0
1.5
120
60
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.3
0.5
—
—
—
—
—
—
1.3
—
0.5
—
65
—
—
65
—
Line Regulation, TJ = +25°C (Note 2)
8.0 Vdc ≤ Vin ≤ 25 Vdc
9.0 Vdc ≤ Vin ≤ 13 Vdc
Regline
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ Vin ≤ 1.5 A
250 mA ≤ Vin ≤ 750 mA
Regload
Quiescent Current (TJ = +25°C)
IB
Quiescent Current Change
8.0 Vdc ≤ Vin ≤ 25 Vdc
9.0 Vdc ≤ Vin ≤ 25 Vdc
5.0 mA ≤ IO ≤ 1.0 A
∆IB
Ripple Rejection
9.0 Vdc ≤ Vin ≤ 19 Vdc, f = 120 Hz
RR
NOTES:
Vdc
mV
mV
mA
mA
dB
1. Tlow = 0°C for MCT78XXC
= – 40°C for MCT78XXB
Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting
will reduce the output current to less than 1.0 A at a VI–VO of 15 V or
greater. The MC7800 die will supply more current under the same conditions.
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately.
Pulse testing with low duty cycle is used.
MOTOROLA
MCT7800
3
MCT7800
ELECTRICAL CHARACTERISTICS (continued) (Vin = 11 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7806B
Characteristics
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
MCT7806C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
VI – VO
—
2.0
—
—
2.0
—
Vdc
—
10
—
—
10
—
—
1.3
—
—
1.3
—
—
0.2
—
—
0.2
—
µV/VO
Vn
Output Resistance f = 1.0 kHz
rO
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
ISC
Peak Output Current (TJ = +25°C)
Imax
—
2.2
—
—
2.2
—
A
TCVO
—
– 0.8
—
—
– 0.8
—
mV/°C
Average Temperature Coefficient of Output Voltage
mΩ
A
ELECTRICAL CHARACTERISTICS (Vin = 14 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7808B
Characteristics
MCT7808C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
VO
7.7
8.0
8.3
7.7
8.0
8.3
Vdc
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
10.5 Vdc ≤ Vin ≤ 23 Vdc
11.5 Vdc ≤ Vin ≤ 23 Vdc
VO
—
7.6
—
8.0
—
8.4
7.6
—
8.0
—
8.4
—
—
—
7.0
2.0
160
80
—
—
7.0
2.0
160
80
—
—
2.0
1.5
160
80
—
—
2.0
1.5
160
80
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.0
0.5
—
—
—
—
—
—
1.0
—
0.5
—
63
—
—
63
—
—
2.0
—
—
2.0
—
—
10
—
—
10
—
—
18
—
—
18
—
—
0.2
—
—
0.2
—
Line Regulation, TJ = +25°C (Note 2)
10.5 Vdc ≤ Vin ≤ 25 Vdc
11 Vdc ≤ Vin ≤ 17 Vdc
Regline
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ IO ≤ 1.5 A
250 mA ≤ IO ≤ 750 mA
Regload
Quiescent Current (TJ = +25°C)
IB
Quiescent Current Change
10.5 Vdc ≤ Vin ≤ 25 Vdc
11.5 Vdc ≤ Vin ≤ 25 Vdc
5.0 mA ≤ IO ≤ 1.0 A
∆IB
Ripple Rejection
11.5 Vdc ≤ Vin ≤ 21.5 Vdc, f = 120 Hz
RR
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
VI – VO
Vdc
mV
mV
mA
mA
dB
Vdc
µV/VO
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
Vn
Output Resistance f = 1.0 kHz
rO
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
ISC
Peak Output Current (TJ = +25°C)
Imax
—
2.2
—
—
2.2
—
A
TCVO
—
– 0.8
—
—
– 0.8
—
mV/°C
Average Temperature Coefficient of Output Voltage
NOTES:
mΩ
A
1. Tlow = 0°C for MCT78XXC
= – 40°C for MCT78XXB
Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting
will reduce the output current to less than 1.0 A at a VI–VO of 15 V or
greater. The MC7800 die will supply more current under the same conditions.
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately.
Pulse testing with low duty cycle is used.
MCT7800
4
MOTOROLA
MCT7800
ELECTRICAL CHARACTERISTICS (Vin = 15 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7809B
Characteristics
Output Voltage (TJ = +25°C)
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
11.5 Vdc ≤ Vin ≤ 24 Vdc
12.5 Vdc ≤ Vin ≤ 24 Vdc
Line Regulation, TJ = +25°C (Note 2)
11.5 Vdc ≤ Vin ≤ 26 Vdc
11.5 Vdc ≤ Vin ≤ 17 Vdc
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ IO ≤ 1.5 A
250 mA ≤ IO ≤ 750 mA
Quiescent Current (TJ = +25°C)
Quiescent Current Change
11.5 Vdc ≤ Vin ≤ 26 Vdc
12.5 Vdc ≤ Vin ≤ 26 Vdc
5.0 mA ≤ IO ≤ 1.0 A
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
VO
VO
8.65
9.0
9.35
8.65
9.0
9.35
Vdc
—
8.55
—
9.0
—
9.45
8.55
—
9.0
—
9.45
—
—
—
8.0
4.0
50
25
—
—
8.0
4.0
50
25
—
—
3.0
2.0
50
25
—
—
3.0
2.0
50
25
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.0
0.5
—
—
—
—
—
—
1.0
—
0.5
—
62
—
—
62
—
—
2.0
—
—
2.0
—
mV
Regload
IB
∆IB
RR
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
VI – VO
Vn
Output Resistance f = 1.0 kHz
rO
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
Peak Output Current (TJ = +25°C)
ISC
Average Temperature Coefficient of Output Voltage
Vdc
Regline
Ripple Rejection
11.5 Vdc ≤ Vin ≤ 21.5 Vdc, f = 120 Hz
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
MCT7809C
Imax
TCVO
mV
mA
mA
dB
Vdc
µV/VO
—
10
—
—
10
—
—
18
—
—
18
—
—
0.2
—
—
0.2
—
—
2.2
—
—
2.2
—
A
—
–1.0
—
—
–1.0
—
mV/°C
mΩ
A
ELECTRICAL CHARACTERISTICS (Vin = 19 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7812B
Characteristics
Output Voltage (TJ = +25°C)
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
14.5 Vdc ≤ Vin ≤ 27 Vdc
15.5 Vdc ≤ Vin ≤ 27 Vdc
Line Regulation, TJ = +25°C (Note 2)
14.5 Vdc ≤ Vin ≤ 30 Vdc
16 Vdc ≤ Vin ≤ 22 Vdc
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ IO ≤ 1.5 A
250 mA ≤ IO ≤ 750 mA
Quiescent Current (TJ = +25°C)
Quiescent Current Change
14.5 Vdc ≤ Vin ≤ 30 Vdc
15 Vdc ≤ Vin ≤ 30 Vdc
5.0 mA ≤ IO ≤ 1.0 A
NOTES:
MCT7812C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
VO
VO
11.5
12
12.5
11.5
12
12.5
Vdc
—
11.4
—
12
—
12.6
11.4
—
12
—
12.6
—
—
—
10
5.0
240
120
—
—
10
5.0
240
120
—
—
3.0
2.0
240
120
—
—
3.0
2.0
240
120
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.0
0.5
—
—
—
—
—
—
1.0
—
0.5
Vdc
Regline
mV
Regload
IB
∆IB
mV
mA
mA
1. Tlow = 0°C for MCT78XXC
= – 40°C for MCT78XXB
Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting
will reduce the output current to less than 1.0 A at a VI–VO of 15 V or
greater. The MC7800 die will supply more current under the same conditions.
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately.
Pulse testing with low duty cycle is used.
MOTOROLA
MCT7800
5
MCT7800
ELECTRICAL CHARACTERISTICS (continued) (Vin = 19 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7812B
Characteristics
Ripple Rejection
15 Vdc ≤ Vin ≤ 25 Vdc, f = 120 Hz
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
Output Resistance f = 1.0 kHz
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
Peak Output Current (TJ = +25°C)
Average Temperature Coefficient of Output Voltage
Symbol
MCT7812C
Min
Typ
Max
Min
Typ
Max
—
62
—
—
62
—
—
2.0
—
—
2.0
—
—
10
—
—
10
—
—
18
—
—
18
—
—
0.2
—
—
0.2
—
—
2.2
—
—
2.2
—
A
—
–1.0
—
—
–1.0
—
mV/°C
RR
VI – VO
Vn
rO
ISC
Imax
TCVO
Unit
dB
Vdc
µV/VO
mΩ
A
ELECTRICAL CHARACTERISTICS (Vin = 23 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7815B
Characteristics
MCT7815C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Output Voltage (TJ = +25°C)
VO
14.4
15
15.6
14.4
15
15.6
Vdc
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
17.5 Vdc ≤ Vin ≤ 30 Vdc
18.5 Vdc ≤ Vin ≤ 30 Vdc
VO
—
14.25
—
15
—
15.75
14.25
—
15
—
15.75
—
—
—
11
5.0
300
150
—
—
11
5.0
300
150
—
—
3.0
2.0
300
150
—
—
3.0
2.0
300
150
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.0
0.5
—
—
—
—
—
—
1.0
—
0.5
—
60
—
—
60
—
—
2.0
—
—
2.0
—
—
10
—
—
10
—
—
19
—
—
19
—
—
0.2
—
—
0.2
—
Line Regulation, TJ = +25°C (Note 2)
17.5 Vdc ≤ Vin ≤ 30 Vdc
20 Vdc ≤ Vin ≤ 26 Vdc
Regline
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ Vin ≤ 1.5 A
250 mA ≤ Vin ≤ 750 mA
Regload
Quiescent Current (TJ = +25°C)
IB
Quiescent Current Change
17.5 Vdc ≤ Vin ≤ 30 Vdc
18.5 Vdc ≤ Vin ≤ 30 Vdc
5.0 mA ≤ IO ≤ 1.0 A
∆IB
Ripple Rejection
18.5 Vdc ≤ Vin ≤ 28.5 Vdc, f = 120 Hz
RR
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
VI – VO
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
Vdc
mV
mV
mA
mA
dB
Vdc
µV/VO
Vn
Output Resistance f = 1.0 kHz
rO
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
ISC
Peak Output Current (TJ = +25°C)
Imax
—
2.2
—
—
2.2
—
A
TCVO
—
–1.0
—
—
–1.0
—
mV/°C
Average Temperature Coefficient of Output Voltage
NOTES:
mΩ
A
1. Tlow = 0°C for MCT78XXC
= – 40°C for MCT78XXB
Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting
will reduce the output current to less than 1.0 A at a VI–VO of 15 V or
greater. The MC7800 die will supply more current under the same conditions.
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately.
Pulse testing with low duty cycle is used.
MCT7800
6
MOTOROLA
MCT7800
ELECTRICAL CHARACTERISTICS (Vin = 27 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7818B
Characteristics
Output Voltage (TJ = +25°C)
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
21 Vdc ≤ Vin ≤ 33 Vdc
22 Vdc ≤ Vin ≤ 33 Vdc
Line Regulation, TJ = +25°C (Note 2)
21 Vdc ≤ Vin ≤ 33 Vdc
24 Vdc ≤ Vin ≤ 30 Vdc
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ Vin ≤ 1.5 A
250 mA ≤ Vin ≤ 750 mA
Quiescent Current (TJ = +25°C)
Quiescent Current Change
21 Vdc ≤ Vin ≤ 33 Vdc
22 Vdc ≤ Vin ≤ 33 Vdc
5.0 mA ≤ IO ≤ 1.0 A
Ripple Rejection
22 Vdc ≤ Vin ≤ 32 Vdc, f = 120 Hz
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
Output Resistance f = 1.0 kHz
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
Peak Output Current (TJ = +25°C)
Average Temperature Coefficient of Output Voltage
MCT7818C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
VO
VO
17.3
18
18.7
17.3
18
18.7
Vdc
—
17.1
—
18
—
18.9
17.1
—
18
—
18.9
—
—
—
11
5.0
360
180
—
—
11
5.0
360
180
—
—
4.0
3.0
360
180
—
—
4.0
3.0
360
180
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.0
0.5
—
—
—
—
—
—
1.0
—
0.5
—
59
—
—
59
—
—
2.0
—
—
2.0
—
Vdc
Regline
mV
Regload
IB
∆IB
mV
mA
RR
ViI – VO
Vn
rO
ISC
Imax
TCVO
mA
dB
Vdc
µV/VO
—
10
—
—
10
—
—
19
—
—
19
—
—
0.2
—
—
0.2
—
—
2.2
—
—
2.2
—
A
—
–1.0
—
—
–1.0
—
mV/°C
mΩ
A
ELECTRICAL CHARACTERISTICS (Vin = 33 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1], unless otherwise noted.)
MCT7824B
Characteristics
Output Voltage (TJ = +25°C)
Output Voltage (5.0 mA ≤ IO ≤ 1.0 A, PO ≤15 W)
27 Vdc ≤ Vin ≤ 38 Vdc
28 Vdc ≤ Vin ≤ 38 Vdc
Line Regulation, TJ = +25°C (Note 2)
27 Vdc ≤ Vin ≤ 38 Vdc
30 Vdc ≤ Vin ≤ 36 Vdc
Load Regulation, TJ = +25°C (Note 2)
5.0 mA ≤ IO ≤ 1.5 A
250 mA ≤ IO ≤ 750 mA
Quiescent Current (TJ = +25°C)
Quiescent Current Change
27 Vdc ≤ Vin ≤ 38 Vdc
28 Vdc ≤ Vin ≤ 38 Vdc
5.0 mA ≤ IO ≤ 1.0 A
Ripple Rejection
28 Vdc ≤ Vin ≤ 38 Vdc, f = 120 Hz
Dropout Voltage (IO = 1.0 A, TJ = +25°C)
Output Noise Voltage (TA = +25°C)
10 Hz ≤ f ≤ 100 kHz
Output Resistance f = 1.0 kHz
Short Circuit Current Limit (TA = +25°C)
Vin = 35 Vdc
Peak Output Current (TJ = +25°C)
Average Temperature Coefficient of Output Voltage
NOTES:
MCT7824C
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
VO
VO
23
24
25
23
24
25
Vdc
—
22.8
—
24
—
25.2
22.8
—
24
—
25.2
—
—
—
12
6.0
480
240
—
—
12
6.0
480
240
—
—
5.0
4.0
480
240
—
—
5.0
4.0
480
240
—
5.5
8.0
—
5.5
8.0
—
—
—
—
—
—
—
1.0
0.5
—
—
—
—
—
—
1.0
—
0.5
—
56
—
—
56
—
—
2.0
—
—
2.0
—
Vdc
Regline
mV
Regload
IB
∆IB
mV
mA
RR
VI – VO
Vn
rO
ISC
Imax
TCVO
mA
dB
Vdc
µV/VO
—
10
—
—
10
—
—
20
—
—
20
—
—
0.2
—
—
0.2
—
—
2.2
—
—
2.2
—
A
—
–1.5
—
—
–1.5
—
mV/°C
mΩ
A
1. Tlow = 0°C for MCT78XXC
= – 40°C for MCT78XXB
Thigh = +125°C for MCT78XXB, C. When the junction temperature exceeds +125°C, internal current limiting
will reduce the output current to less than 1.0 A at a VI–VO of 15 V or
greater. The MC7800 die will supply more current under the same conditions.
2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately.
Pulse testing with low duty cycle is used.
MOTOROLA
MCT7800
7
MCT7800
Figure 1. Peak Output Current as a Function of
Input-Output Differential Voltage
Figure 2. Ripple Rejection as a Function of
Output Voltages (MCT78XXC)
80
3.0
2.0
TJ = – 40°C
1.0
TJ = +25°C
RR, RIPPLE REJECTION (dB)
I O , OUTPUT CURRENT (A)
4.0
TJ = +125°C
10
20
30
40
VI – VO, INPUT-OUPUT VOLTAGE DIFFERENTIAL (V)
0
0
60
Device
50
40
4.0
Figure 3. Ripple Rejection as a Function of
Frequency (MCT78XXC)
6.0
8.0
Vin
10 V
19 V
23 V
10
12
14
16
18
VO, OUTPUT VOLTAGE (V)
20
22
24
1000
Z O, OUTPUT IMPEDANCE (mΩ )
RR, RIPPLE REJECTION (dB)
MCT7805C
MCT7812C
MCT7815C
Figure 4. Output Impedance as a Function of
Output Voltage (MCT78XXC)
80
60
Vin = 10 V
VO = 5.0 V
IO = 20 mA
40
20
10
f = 120 Hz
IO = 20 mA
∆Vin = 1.0 Vrms
70
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
500
300
200
100
f = 120 Hz
IO = 500 mA
CL = 0 µF
50
30
20
10
4.0
8.0
12
16
VO, OUTPUT VOLTAGE (V)
20
24
Figure 5. Quiescent Current as a
Function of Temperature
I B, QUIESCENT CURRENT (mA)
6.0
4.0
2.0
1.0
0
–75
MCT7800
8
Vin = 10 V
VO = 5.0 V
IO = 20 mA
3.0
– 50
– 25
0
25
50
75
TJ, JUNCTION TEMPERATURE (°C)
100
125
MOTOROLA
MCT7800
APPLICATIONS INFORMATION
Design Considerations
The MCT7800 Series of fixed voltage regulators are
designed with thermal overload protection that shuts down
the circuit when subjected to an excessive power overload
condition, internal short circuit protection that limits the
maximum current the circuit will pass, and output transistor
safe-area compensation that reduces the output short circuit
current as the voltage across the pass transistor is increased.
In many low current applications, compensation capacitors
are not required. However, it is recommended that the
regulator input be bypassed with a capacitor if the regulator is
connected to the power supply filter with long wire lengths, or
if the output load capacitance is large. An input bypass
capacitor should be selected to provide good high frequency
characteristics to insure stable operation under all load
conditions. A 0.33 µF or larger tantalum, mylar, or other
capacitor having low internal impedance at high frequencies,
should be chosen. The bypass capacitor should be mounted
with the shortest possible leads directly across the regulators’
input terminals. Normally, good construction techniques
should be used to minimize ground loops and lead resistance
drops since the regulator has no external sense lead.
Figure 6. Worst Case Power Dissipation versus
Ambient Temperature (Case 221A)
θHS = 0°C/W
16
θHS = 5°C/W
12
θHS = 15°C/W
8.0
4.0
0
– 50
2.5
θJC = 5°C/W
θJA = 65°C/W
TJ(max) = +150°C
V I – VO , INPUT-OUTPUT VOLTAGE
DIFFERENTIAL (V)
PD, POWER DISSIPATION (W)
20
Figure 7. Input Output Differential as a
Function of Junction Temperature
No Heatsink
– 25
0
25
50
75
100
TA, AMBIENT TEMPERATURE (°C)
125
IO = 1.0 A
2.0
200 mA
500 mA
1.5
20 mA
0 mA
1.0
∆VO = 2% of VO
– – – Extended Curve for MCT78XXB
0.5
0
–75
150
– 50
– 25
0
25
50
75
TJ, JUNCTION TEMPERATURE (°C)
100
125
JUNCTION-TO-AIR (° C/W)
R θ JA, THERMAL RESISTANCE
80
3.5
PD(max) for TA = 50°C
70
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Free Air
Mounted
Vertically
60
2.0 oz. Copper
L
Minimum
Size Pad
50
L
40
RθJA
30
3.0
2.5
2.0
1.5
PD, MAXIMUM POWER DISSIPATION (W)
Figure 8. D2PAK Thermal Resistance and Maximum
Power Dissipation versus P.C.B. Copper Length
1.0
0
5.0
10
15
20
25
30
L, LENGTH OF COPPER (mm)
DEFINITIONS
Line Regulation — The change in output voltage for a
change in the input voltage. The measurement is made under
conditions of low dissipation or by using pulse techniques
such that the average chip temperature is not significantly
affected.
Load Regulation — The change in output voltage for a
change in load current at constant chip temperature.
Maximum Power Dissipation — The maximum total
device dissipation for which the regulator will operate within
specifications.
MOTOROLA
Quiescent Current — That part of the input current that is
not delivered to the load.
Output Noise Voltage — The rms AC voltage at the
output, with constant load and no input ripple, measured over
a specified frequency range.
Long Term Stability — Output voltage stability under
accelerated life test conditions with the maximum rated
voltage listed in the devices’ electrical characteristics and
maximum power dissipation.
MCT7800
9
MCT7800
OUTLINE DIMENSIONS
T SUFFIX
PLASTIC PACKAGE
CASE 221A-06
-TF
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIM Z DEFINES A ZONE WHERE ALL BODY AND
LEAD IRREGULARITIES ARE ALLOWED.
SEATING
PLANE
C
T
S
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
4
A
Q
1 2 3
U
H
K
Z
R
L
J
V
G
D
INCHES
MIN
MAX
0.570 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.155
0.018 0.025
0.500 0.562
0.045 0.060
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.000 0.050
0.045
—
—
0.080
MILLIMETERS
MIN
MAX
14.48 15.75
9.66 10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70 14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
—
—
2.04
N
D2T SUFFIX
PLASTIC PACKAGE
CASE 936-03
(D2PAK)
OPTIONAL
CHAMFER
A
TERMINAL 4
-T-
U
E
S
K
V
B
H
F
1
2
3
M
P
J
N
D
R
0.010 (0.254) M T
G
C
MCT7800
10
L
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS
A AND K.
4. DIMENSIONS U AND V ESTABLISH A MINIMUM
MOUNTING SURFACE FOR TERMINAL 4.
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD
FLASH OR GATE PROTRUSIONS. MOLD FLASH
AND GATE PROTRUSIONS NOT TO EXCEED
0.025 (0.635) MAXIMUM.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
U
V
INCHES
MIN
MAX
0.386
0.403
0.356
0.368
0.170
0.180
0.026
0.036
0.045
0.055
0.051 REF
0.100 BSC
0.539
0.579
0.125 MAX
0.050 REF
0.000
0.010
0.088
0.102
0.018
0.026
0.058
0.078
5 _ REF
0.116 REF
0.200 MIN
0.250 MIN
MILLIMETERS
MIN
MAX
9.804 10.236
9.042
9.347
4.318
4.572
0.660
0.914
1.143
1.397
1.295 REF
2.540 BSC
13.691 14.707
3.175 MAX
1.270 REF
0.000
0.254
2.235
2.591
0.457
0.660
1.473
1.981
5 _ REF
2.946 REF
5.080 MIN
6.350 MIN
MOTOROLA
MCT7800
NOTES
MOTOROLA
MCT7800
11
MCT7800
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MCT7800
12
◊
*MCT7800/D*
1PHX33530-3 PRINTED IN USA (8/94) MPS/POD LINEAR YCAAAA
MCT7800/D
MOTOROLA
DISCRETE SEMICONDUCTORS
DATA SHEET
BS250
P-channel enhancement mode
vertical D-MOS transistor
Product specification
File under Discrete Semiconductors, SC13b
April 1995
Philips Semiconductors
Product specification
P-channel enhancement mode vertical
D-MOS transistor
DESCRIPTION
BS250
QUICK REFERENCE DATA
P-channel enhancement mode
vertical D-MOS transistor in TO-92
variant envelope and intended for use
in relay, high-speed and
line-transformer drivers.
Drain-source voltage
−VDS
max.
Gate-source voltage (open drain)
±VGSO
max.
20 V
Drain current (DC)
−ID
max.
0.25 A
Ptot
max.
0.83 W
FEATURES
Drain-source ON-resistance
RDS(on)
typ.
max.
9 Ω
14 Ω
 Yfs
typ.
125 mS
Total power dissipation
up to Tamb = 25 °C
−ID = 200 mA; −VGS = 10 V
• Low RDS(on)
• Direct interface to C-MOS
Transfer admittance
• High-speed switching
−ID = 200 mA; −VDS = 15 V
• No second breakdown
PINNING - TO-92 VARIANT
1
= source
2
= gate
3
= drain
PIN CONFIGURATION
d
handbook, halfpage
1
2
3
g
MAM147
s
Note: Various pinout configurations available.
Fig.1 Simplified outline and symbol.
April 1995
45 V
2
Philips Semiconductors
Product specification
P-channel enhancement mode vertical
D-MOS transistor
BS250
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Drain-source voltage
−VDS
max.
Gate-source voltage (open drain)
± VGSO
max.
20 V
Drain current (DC)
−ID
max.
0.25 A
Drain current (peak value)
−IDM
max.
0.5 A
Total power dissipation up to Tamb = 25 °C (note 1)
Ptot
max.
0.83 W
Storage temperature range
Tstg
Junction temperature
Tj
max.
150 °C
Rth j-a
=
150 K/W
45 V
−65 to + 150 °C
THERMAL RESISTANCE
From junction to ambient (note 1)
Note
1. Transistor mounted on printed-circuit board, max. lead length 4 mm.
CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Drain-source breakdown voltage
− ID = 100 µA; VGS = 0
−V(BR)DSS
min.
45
V
−IDSS
max.
0.5
µA
−IGSS
max.
20
nA
−VGS(th)
min.
max.
1.0 V
3.5 V
RDS(on)
typ.
max.
9 Ω
14 Ω
 Yfs
typ.
125 mS
Ciss
typ.
max.
30 pF
45 pF
Coss
typ.
max.
20 pF
30 pF
Crss
typ.
max.
5 pF
10 pF
Drain-source leakage current
−VDS = 25 V; VGS = 0
Gate-source leakage current
−VGS = 15 V; VDS = 0
Gate threshold voltage
−ID = 1 mA; VDS = VGS
Drain-source ON-resistance
−ID = 200 mA; −VGS = 10 V
Transfer admittance
−ID = 200 mA; −VDS = 15 V
Input capacitance at f = 1 MHz
−VDS = 10 V; VGS = 0
Output capacitance at f = 1 MHz
−VDS = 10 V; VGS = 0
Feedback capacitance at f = 1 MHz
−VDS = 10 V; VGS = 0
April 1995
3
Philips Semiconductors
Product specification
P-channel enhancement mode vertical
D-MOS transistor
BS250
Switching times (see Figs 2 and 3)
ton
toff
−ID = 200 mA; −VDD = 40 V; −VGS = 0 to 10 V
Fig.2 Switching times test circuit.
April 1995
typ.
typ.
4 ns
10 ns
Fig.3 Input and output waveforms.
4
Philips Semiconductors
Product specification
P-channel enhancement mode vertical
D-MOS transistor
BS250
PACKAGE OUTLINES
Plastic single-ended leaded (through hole) package; 3 leads (on-circle)
SOT54 variant
c
L2
E
d
A
L
b
1
e1
2
e
D
3
b1
L1
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
b
b1
c
D
d
E
e
e1
L
L1(1)
max
L2
max
mm
5.2
5.0
0.48
0.40
0.66
0.56
0.45
0.40
4.8
4.4
1.7
1.4
4.2
3.6
2.54
1.27
14.5
12.7
2.5
2.5
Notes
1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.
OUTLINE
VERSION
SOT54 variant
April 1995
REFERENCES
IEC
JEDEC
EIAJ
TO-92
SC-43
5
EUROPEAN
PROJECTION
ISSUE DATE
97-04-14
Philips Semiconductors
Product specification
P-channel enhancement mode vertical
D-MOS transistor
BS250
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
April 1995
6
Philips Semiconductors
Product specification
P-channel enhancement mode vertical
D-MOS transistor
NOTES
April 1995
7
BS250
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1997
SCA54
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
137107/00/01/pp8
Date of release: April 1995
Document order number:
9397 750 02458
BZX85C...
TELEFUNKEN Semiconductors
Silicon Epitaxial Planar Z–Diodes
Features
Sharp edge in reverse characteristics
Low reverse current
Low noise
Very high stability
Available with tighter tolerances
Applications
94 9369
Voltage stabilization
Absolute Maximum Ratings
Tj = 25C
Parameter
Power dissipation
Test Conditions
Type
l=4mm, TL=25C
Junction temperature
Storage temperature range
Symbol
Value
Unit
PV
1.3
W
Tj
175
C
Tstg
–65...+175
C
Symbol
Value
Unit
RthJA
110
K/W
Maximum Thermal Resistance
Tj = 25C
Parameter
Junction ambient
Test Conditions
l=4mm, TL=constant
Characteristics
Tj = 25C
Parameter
Forward voltage
Rev. A1: 12.12.1994
Test Conditions
IF=200mA
Type
Symbol
VF
Min
Typ
Max
Unit
1
V
1
BZX85C...
Type
1)
2
TELEFUNKEN Semiconductors
VZnorm
IZT for VZT 1) and rzjT
rzjk at IZK
IR
at VR
TKVZ
BZX85C...
V
mA
V
mA
A
V
%/K
2V7
2.7
80
2.5 to 2.9
< 20
< 400
1
< 150
1
–0.08 to –0.05
3V0
3.0
80
2.8 to 3.2
< 20
< 400
1
< 100
1
–0.08 to –0.05
3V3
3.3
80
3.1 to 3.5
< 20
< 400
1
< 40
1
–0.08 to –0.05
3V6
3.6
60
3.4 to 3.8
< 20
< 500
1
< 20
1
–0.08 to –0.05
3V9
3.9
60
3.7 to 4.1
< 15
< 500
1
< 10
1
–0.07 to –0.02
4V3
4.3
50
4.0 to 4.6
< 13
< 500
1
<3
1
–0.07 to –0.01
4V7
4.7
45
4.4 to 5.0
< 13
< 600
1
<3
1
–0.03 to +0.04
5V1
5.1
45
4.8 to 5.4
< 10
< 500
1
<1
1.5
–0.01 to +0.04
5V6
5.6
45
5.2 to 6.0
<7
< 400
1
<1
2
0 to +0.045
6V2
6.2
35
5.8 to 6.6
<4
< 300
1
<1
3
+0.01 to +0.055
6V8
6.8
35
6.4 to 7.2
< 3.5
< 300
1
<1
4
+0.015 to +0.06
7V5
7.5
35
7.0 to 7.9
<3
< 200
0.5
<1
4.5
+0.02 to +0.065
8V2
8.2
25
7.7 to 8.7
<5
< 200
0.5
<1
6.2
0.03 to 0.07
9V1
9.1
25
8.5 to 9.6
<5
< 200
0.5
<1
6.8
0.035 to 0.075
10
10
25
9.4 to 10.6
<7
< 200
0.5
< 0.5
7
0.04 to 0.08
11
11
20
10.4 to 11.6
<8
< 300
0.5
< 0.5
8.2
0.045 to 0.08
12
12
20
11.4 to 12.7
<9
< 350
0.5
< 0.5
9.1
0.045 to 0.085
13
13
20
12.4 to 14.1
< 10
< 400
0.5
< 0.5
10
0.05 to 0.085
15
15
15
13.8 to 15.6
< 15
< 500
0.5
< 0.5
11
0.055 to 0.09
16
16
15
15.3 to 17.1
< 15
< 500
0.5
< 0.5
12
0.055 to 0.09
18
18
15
16.8 to 19.1
< 20
< 500
0.5
< 0.5
13
0.06 to 0.09
20
20
10
18.8 to 21.2
< 24
< 600
0.5
< 0.5
15
0.06 to 0.09
22
22
10
20.8 to 23.3
< 25
< 600
0.5
< 0.5
16
0.06 to 0.095
24
24
10
22.8 to 25.6
< 25
< 600
0.5
< 0.5
18
0.06 to 0.095
27
27
8
25.1 to 28.9
< 30
< 750
0.25
< 0.5
20
0.06 to 0.095
30
30
8
28 to 32
< 30
< 1000
0.25
< 0.5
22
0.06 to 0.095
33
33
8
31 to 35
< 35
< 1000
0.25
< 0.5
24
0.06 to 0.095
36
36
8
34 to 38
< 40
< 1000
0.25
< 0.5
27
0.06 to 0.095
39
39
6
37 to 41
< 50
< 1000
0.25
< 0.5
30
0.06 to 0.095
43
43
6
40 to 46
< 50
< 1000
0.25
< 0.5
33
0.06 to 0.095
47
47
4
44 to 50
< 90
< 1500
0.25
< 0.5
36
0.06 to 0.095
51
51
4
48 to 54
< 115
< 1500
0.25
< 0.5
39
0.06 to 0.095
56
56
4
52 to 60
< 120
< 2000
0.25
< 0.5
43
0.06 to 0.095
62
62
4
58 to 66
< 125
< 2000
0.25
< 0.5
47
0.06 to 0.095
68
68
4
64 to 72
< 130
< 2000
0.25
< 0.5
51
0.06 to 0.095
75
75
4
70 to 79
< 135
< 2000
0.25
< 0.5
56
0.06 to 0.095
Tighter tolerances available on request.
Rev. A1: 12.12.1994
BZX85C...
TELEFUNKEN Semiconductors
R thJA – Therm. Resist. Junction / Ambient ( K/W )
Typical Characteristics (Tj = 25C unless otherwise specified)
Ptot – Total Power Dissipation ( W )
2.0
1.6
1.2
l=4mm
0.8
l=10mm
l=20mm
0.4
0
–50
0
50
100
150
200
Tamb – Ambient Temperature ( °C )
95 9612
250
200
150
l
50
0
5
10
15
20
25
30
l – Lead Length ( mm )
95 9613
Figure 2 : Thermal Resistance vs. Lead Length
1000
1000
r Z – Differential Z-Resistance ( W )
C D – Diode Capacitance ( pF )
TL=constant
0
Figure 1 : Total Power Dissipation vs. Ambient Temperature
100
VR = 0V
VR = 2V
VR = 5V
VR = 20V
VR = 30V
10
f = 1 MHz
Tamb= 25°C
1
0
10
20
IZ=1mA
2mA
100
5mA
10mA
20mA
10
1
30
50
40
60
1
VZ – Z-Voltage ( V )
95 9616
10
100
VZ – Z-Voltage ( V )
95 9615
Figure 3 : Diode Capacitance vs. Z–Voltage
Z thp – Thermal Resistance for Pulse Cond. (K/W)
l
100
Figure 4 : Differential Z–Resistance vs. Z–Voltage
1000
tp/T=0.01
tp/T=0.1
100
tp/T=0.5
RthJA=110K/W
DT=Tjmax–Tamb
tp/T=0.02
tp/T=0.05
tp/T=0.2
10
Single Pulse
1
10–1
100
iZM=(–VZ+(VZ2+4rzjDT/Zthp)1/2)/(2rzj)
101
102
103
tp – Pulse Length ( ms )
95 9614
Figure 5 : Thermal Response
Rev. A1: 12.12.1994
3
BZX85C...
TELEFUNKEN Semiconductors
Dimensions in mm
Cathode Identification
technical drawings
according to DIN
specifications
∅ 0.85 max.
∅ 2.5 max.
Standard Glass Case
54 B 2 DIN 41880
JEDEC DO 41
Weight max. 0.3 g
4
26 min.
4.1 max.
26 min.
94 9368
Rev. A1: 12.12.1994
TELEFUNKEN Semiconductors
BZX85C...
OZONE DEPLETING SUBSTANCES POLICY STATEMENT
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to
1. Meet all present and future national and international statutory requirements and
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on the
environment.
Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known
as ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) will soon severely restrict the use of ODSs and forbid
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these
substances.
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous
improvements to eliminate the use of any ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection
Agency ( EPA) in the USA and
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.
We reserve the right to make changes to improve technical design without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application,
the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax Number: 49 ( 0 ) 7131 67 2423
Rev. A1: 12.12.1994
5
CD4093BM/CD4093BC Quad
2-Input NAND Schmitt Trigger
Y
General Description
Y
The CD4093B consists of four Schmitt-trigger circuits. Each
circuit functions as a 2-input NAND gate with Schmitt-trigger
action on both inputs. The gate switches at different points
for positive and negative-going signals. The difference between the positive (VT a ) and the negative voltage (VTb) is
defined as hysteresis voltage (VH).
All outputs have equal source and sink currents and conform to standard B-series output drive (see Static Electrical
Characteristics).
Y
Y
Applications
Y
Features
Y
Y
Y
Y
Wide supply voltage range
Schmitt-trigger on each input
with no external components
Noise immunity greater than 50%
3.0V to 15V
Equal source and sink currents
No limit on input rise and fall time
Standard B-series output drive
Hysteresis voltage (any input) TA e 25§ C
VH e 1.5V
Typical
VDD e 5.0V
VDD e 10V
VH e 2.2V
VDD e 15V
VH e 2.7V
Guaranteed
VH e 0.1 VDD
Y
Y
Y
Wave and pulse shapers
High-noise-environment systems
Monostable multivibrators
Astable multivibrators
NAND logic
Connection Diagram
Dual-In-Line Package
TL/F/5982 – 1
Top View
Order Number CD4093B
C1995 National Semiconductor Corporation
TL/F/5982
RRD-B30M105/Printed in U. S. A.
CD4093BM/CD4093BC Quad 2-Input NAND Schmitt Trigger
February 1993
Absolute Maximum Ratings (Notes 1 & 2)
Recommended Operating
Conditions (Note 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
DC Supply Voltage (VDD)
Input Voltage (VIN)
Storage Temperature Range (TS)
Power Dissipation (PD)
Dual-In-Line
Small Outline
Lead Temperature (TL)
(Soldering, 10 seconds)
DC Supply Voltage (VDD)
Input Voltage (VIN)
Operating Temperature Range (TA)
CD4093BM
CD4093BC
b 0.5 to a 18 VDC
b 0.5 to VDD a 0.5 VDC
b 65§ C to a 150§ C
3 to 15 VDC
0 to VDD VDC
b 55§ C to a 125§ C
b 40§ C to a 85§ C
700 mW
500 mW
260§ C
DC Electrical Characteristics CD4093BM (Note 2)
Symbol
Parameter
b 55§ C
Conditions
Min
Max
IDD
Quiescent Device
Current
VDD e 5V
VDD e 10V
VDD e 15V
0.25
0.5
1.0
VOL
Low Level
Output Voltage
VIN e VDD, lIOl k 1 mA
VDD e 5V
VDD e 10V
VDD e 15V
0.05
0.05
0.05
High Level
Output Voltage
VIN e VSS, lIOl k 1 mA
VDD e 5V
VDD e 10V
VDD e 15V
4.95
9.95
14.95
Negative-Going Threshold
Voltage (Any Input)
lIOl k 1 mA
VDD e 5V, VO e 4.5V
VDD e 10V, VO e 9V
VDD e 15V, VO e 13.5V
1.3
2.85
4.35
Positive-Going Threshold
Voltage (Any Input)
lIOl k 1 mA
VDD e 5V, VO e 0.5V
VDD e 10V, VO e 1V
VDD e 15V, VO e 1.5V
VH
Hysteresis (VT a b VTb)
(Any Input)
IOL
VOH
VTb
VT a
IOH
IIN
a 25§ C
Min
Typ
0
0
0
a 125§ C
Max
Min
Units
Max
0.25
0.5
1.0
7.5
15.0
30.0
mA
mA
mA
0.05
0.05
0.05
0.05
0.05
0.05
V
V
V
4.95
9.95
14.95
5
10
15
2.25
4.5
6.75
1.5
3.0
4.5
1.8
4.1
6.3
2.25
4.5
6.75
1.5
3.0
4.5
2.3
4.65
6.9
V
V
V
2.75
5.5
8.25
3.65
7.15
10.65
2.75
5.5
8.25
3.3
6.2
9.0
3.5
7.0
10.5
2.65
5.35
8.1
3.5
7.0
10.5
V
V
V
VDD e 5V
VDD e 10V
VDD e 15V
0.5
1.0
1.5
2.35
4.30
6.30
0.5
1.0
1.5
1.5
2.2
2.7
2.0
4.0
6.0
0.35
0.70
1.20
2.0
4.0
6.0
V
V
V
Low Level Output
Current (Note 3)
VIN e VDD
VDD e 5V, VO e 0.4V
VDD e 10V, VO e 0.5V
VDD e 15V, VO e 1.5V
0.64
1.6
4.2
0.51
1.3
3.4
0.88
2.25
8.8
0.36
0.9
2.4
mA
mA
mA
High Level Output
Current (Note 3)
VIN e VSS
VDD e 5V, VO e 4.6V
VDD e 10V, VO e 9.5V
VDD e 15V, VO e 13.5V
b 0.64
b 1.6
b 4.2
0.51
b 1.3
b 3.4
b 0.88
b 2.25
b 8.8
b 0.36
b 0.9
b 2.4
mA
mA
mA
Input Current
VDD e 15V, VIN e 0V
VDD e 15V, VIN e 15V
4.95
9.95
14.95
V
V
V
b 0.1
b 10 b 5
b 0.1
b 1.0
0.1
10b5
0.1
1.0
mA
mA
Note 1: ‘‘Absolute Maximum Ratings’’ are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices
should be operated at these limits. The table of ‘‘Recommended Operating Conditions’’ and ‘‘Electrical Characteristics’’ provides conditions for actual device
operation.
Note 2: VSS e 0V unless otherwise specified.
Note 3: IOH and IOL are tested one output at a time.
2
DC Electrical Characteristics CD4093BC (Note 2)
Symbol
Parameter
b 40§ C
Conditions
Min
Max
IDD
Quiescent Device
Current
VDD e 5V
VDD e 10V
VDD e 15V
1.0
2.0
4.0
VOL
Low Level
Output Voltage
VIN e VDD, lIOl k 1 mA
VDD e 5V
VDD e 10V
VDD e 15V
0.05
0.05
0.05
High Level
Output Voltage
VIN e VSS, lIOl k 1 mA
VDD e 5V
VDD e 10V
VDD e 15V
4.95
9.95
14.95
Negative-Going Threshold
Voltage (Any Input)
lIOl k 1 mA
VDD e 5V, VO e 4.5V
VDD e 10V, VO e 9V
VDD e 15V, VO e 13.5V
1.3
2.85
4.35
Positive-Going Threshold
Voltage (Any Input)
lIOl k 1 mA
VDD e 5V, VO e 0.5V
VDD e 10V, VO e 1V
VDD e 15V, VO e 1.5V
VH
Hysteresis (VT a b VTb)
(Any Input)
IOL
VOH
VTb
VT a
IOH
IIN
a 25§ C
Min
Typ
0
0
0
a 85§ C
Max
Min
Units
Max
1.0
2.0
4.0
7.5
15.0
30.0
mA
mA
mA
0.05
0.05
0.05
0.05
0.05
0.05
V
V
V
4.95
9.95
14.95
5
10
15
2.25
4.5
6.75
1.5
3.0
4.5
1.8
4.1
6.3
2.25
4.5
6.75
1.5
3.0
4.5
2.3
4.65
6.9
V
V
V
2.75
5.5
8.25
3.6
7.15
10.65
2.75
5.5
8.25
3.3
6.2
9.0
3.5
7.0
10.5
2.65
5.35
8.1
3.5
7.0
10.5
V
V
V
VDD e 5V
VDD e 10V
VDD e 15V
0.5
1.0
1.5
2.35
4.3
6.3
0.5
1.0
1.5
1.5
2.2
2.7
2.0
4.0
6.0
0.35
0.70
1.20
2.0
4.0
6.0
V
V
V
Low Level Output
Current (Note 3)
VIN e VDD
VDD e 5V, VO e 0.4V
VDD e 10V, VO e 0.5V
VDD e 15V, VO e 1.5V
0.52
1.3
3.6
0.44
1.1
3.0
0.88
2.25
8.8
0.36
0.9
2.4
mA
mA
mA
High Level Output
Current (Note 3)
VIN e VSS
VDD e 5V, VO e 4.6V
VDD e 10V, VO e 9.5V
VDD e 15V, VO e 13.5V
b 0.52
b 1.3
b 3.6
0.44
b 1.1
b 3.0
b 0.88
b 2.25
b 8.8
b 0.36
b 0.9
b 2.4
mA
mA
mA
Input Current
VDD e 15V, VIN e 0V
VDD e 15V, VIN e 15V
4.95
9.95
14.95
V
V
V
b 0.3
b 10 b 5
b 0.3
b 1.0
0.3
10b5
0.3
1.0
mA
mA
AC Electrical Characteristics*
TA e 25§ C, CL e 50 pF, RL e 200k, Input tr, tf e 20 ns, unless otherwise specified
Typ
Max
Units
tPHL, tPLH
Symbol
Propagation Delay Time
Parameter
VDD e 5V
VDD e 10V
VDD e 15V
Conditions
300
120
80
450
210
160
ns
ns
ns
tTHL, tTLH
Transition Time
VDD e 5V
VDD e 10V
VDD e 15V
90
50
40
145
75
60
ns
ns
ns
CIN
Input Capacitance
(Any Input)
5.0
7.5
pF
CPD
Power Dissipation Capacitance
(Per Gate)
24
*AC Parameters are guaranteed by DC correlated testing.
Note 2: VSS e 0V unless otherwise specified.
Note 3: IOH and IOL are tested one output at a time.
3
Min
pF
Typical Applications
Gated Oscillator
TL/F/5982 – 2
Assume t1 a t2 ll tPHL a tPLH then:
t0 e RC fin [VDD/VTb]
t1 e RC fin [(VDD b VTb)/(VDD b VT a )]
t2 e RC fin [VT a /VTb]
fe
1
e
t1 a t2
1
(VT a ) (VDD b VTb)
RC fin
(VTb)(VDD b VT a )
TL/F/5982 – 3
Gated One-Shot
TL/F/5982 – 4
TL/F/5982 – 5
(a) Negative-Edge Triggered
TL/F/5982 – 6
TL/F/5982 – 7
(b) Positive-Edge Triggered
4
Typical Performance Characteristics
Typical Transfer
Characteristics
Guaranteed Hysteresis vs VDD
TL/F/5982 – 8
TL/F/5982 – 9
Guaranteed Trigger Threshold
Voltage vs VDD
Guaranteed Hysteresis vs VDD
TL/F/5982 – 10
TL/F/5982 – 11
Input and Output Characteristics
Output Characteristic
Input Characteristic
TL/F/5982–12
TL/F/5982 – 13
VNML e VIH(MIN) b VOL j VIH(MIN) e VT a (MIN)
VNMH e VOH b VIL(MAX) j VDD b VIL(MAX) e VDD b VTb(MAX)
AC Test Circuits and Switching Time Waveforms
TL/F/5982 – 14
TL/F/5982 – 15
5
CD4093BM/CD4093BC Quad 2-Input NAND Schmitt Trigger
Physical Dimensions inches (millimeters)
Ceramic Dual-In-Line Package (J)
Order Number CD4093BMJ or CD4093BCJ
NS Package Number J14A
Molded Dual-In-Line Package (N)
Order Number CD4093BM or CD4093BCN
NS Package Number N14A
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.
National Semiconductor
Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
National Semiconductor
Europe
Fax: (a49) 0-180-530 85 86
Email: cnjwge @ tevm2.nsc.com
Deutsch Tel: (a49) 0-180-530 85 85
English Tel: (a49) 0-180-532 78 32
Fran3ais Tel: (a49) 0-180-532 93 58
Italiano Tel: (a49) 0-180-534 16 80
National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960
National Semiconductor
Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
HN58C256A Series
HN58C257A Series
256k EEPROM (32-kword × 8-bit)
Ready/Busy and RES function (HN58C257A)
ADE-203-410D (Z)
Rev. 4.0
Oct. 24, 1997
Description
The Hitachi HN58C256A and HN58C257A are electrically erasable and programmable ROMs organized
as 32768-word × 8-bit. They have realized high speed low power consumption and high reliability by
employing advanced MNOS memory technology and CMOS process and circuitry technology. They also
have a 64-byte page programming function to make their write operations faster.
Features
• Single 5 V supply: 5 V ±10%
• Access time: 85 ns/100 ns (max)
• Power dissipation
 Active: 20 mW/MHz, (typ)
 Standby: 110 µW (max)
• On-chip latches: address, data, CE, OE, WE
• Automatic byte write: 10 ms max
• Automatic page write (64 bytes): 10 ms max
• Ready/Busy (only the HN58C257A series)
• Data polling and Toggle bit
• Data protection circuit on power on/off
• Conforms to JEDEC byte-wide standard
• Reliable CMOS with MNOS cell technology
• 105 erase/write cycles (in page mode)
• 10 years data retention
• Software data protection
• Write protection by RES pin (only the HN58C257A series)
• Industrial versions (Temperature range: – 20 to 85˚C and – 40 to 85°C) are also available.
HN58C256A Series, HN58C257A Series
Ordering Information
Type No.
Access time
Package
HN58C256AP-85
HN58C256AP-10
85 ns
100 ns
600 mil 28-pin plastic DIP (DP-28)
HN58C256AFP-85
HN58C256AFP-10
85 ns
100 ns
400 mil 28-pin plastic SOP (FP-28D)
HN58C256AT-85
HN58C256AT-10
85 ns
100 ns
28-pin plastic TSOP (TFP-28DB)
HN58C257AT-85
HN58C257AT-10
85 ns
100 ns
8 × 14 mm2 32-pin plastic TSOP (TFP-32DA)
Pin Arrangement
HN58C256AP/AFP Series
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
I/O1
I/O2
VSS
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(Top view)
HN58C256AT Series
VCC
WE
A13
A8
A9
A11
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
A2
A1
A0
I/O0
I/O1
I/O2
VSS
I/O3
I/O4
I/O5
I/O6
I/O7
CE
A10
15
16
17
18
19
20
21
22
23
24
25
26
27
28
A3
A4
A5
A6
A7
A12
A14
VCC
WE
A13
A8
A9
A11
OE
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A3
A4
A5
A6
A7
A12
A14
RDY/Busy
VCC
RES
WE
A13
A8
A9
A11
OE
(Top view)
HN58C257AT Series
A2
A1
A0
NC
I/O0
I/O1
I/O2
VSS
I/O3
I/O4
I/O5
I/O6
I/O7
NC
CE
A10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
(Top view)
2
14
13
12
11
10
9
8
7
6
5
4
3
2
1
HN58C256A Series, HN58C257A Series
Pin Description
Pin name
Function
A0 to A14
Address input
I/O0 to I/O7
Data input/output
OE
Output enable
CE
Chip enable
WE
Write enable
VCC
Power supply
VSS
Ground
RDY/Busy*
RES*
1
1
Reset
NC
Note:
Ready busy
No connection
1. This function is supported by only the HN58C257A series.
Block Diagram
Note: This function is supported by only the HN58C257A series.
I/O0
VCC
to
I/O7
RDY/Busy *1
High voltage generator
VSS
RES *1
I/O buffer
and
input latch
OE
CE
Control logic and timing
WE
RES *1
A0
Y decoder
to
Y gating
A5
Address
buffer and
latch
X decoder
Memory array
A6
to
A14
Data latch
3
HN58C256A Series, HN58C257A Series
Operation Table
Operation
CE
OE
WE
RES* 3
1
RDY/Busy* 3
I/O
High-Z
Dout
VIL
VIL
VIH
VH *
Standby
VIH
×*
×
×
High-Z
High-Z
Write
VIL
VIH
VIL
VH
High-Z to V OL
Din
Deselect
VIL
VIH
VIH
VH
High-Z
High-Z
Write inhibit
×
×
VIH
×
—
—
×
VIL
×
×
—
—
Data polling
VIL
VIL
VIH
VH
VOL
Dout (I/O7)
Program reset
×
×
×
VIL
High-Z
High-Z
Read
2
Notes: 1. Refer to the recommended DC operating condition.
2. × : Don’t care
3. This function is supported by only the HN58C257A series.
Absolute Maximum Ratings
Parameter
Symbol
Value
Power supply voltage relative to V SS
VCC
–0.6 to +7.0
Vin
1
–0.5* to +7.0*
Topr
0 to +70
°C
Tstg
–55 to +125
°C
Input voltage relative to V SS
Operating temperature range*
Storage temperature range
2
Notes: 1. Vin min = –3.0 V for pulse width ≤ 50 ns
2. Including electrical characteristics and data retention
3. Should not exceed VCC + 1 V.
4
Unit
V
3
V
HN58C256A Series, HN58C257A Series
Recommended DC Operating Conditions
Parameter
Symbol
Min
Typ
Max
Unit
Supply voltage
VCC
4.5
5.0
5.5
V
VSS
0
0
0
V
—
0.8
Input voltage
1
VIL
–0.3*
VIH
VH *
Operating temperature
3
Topr
V
2
2.2
—
VCC + 0.3* V
VCC – 0.5
—
VCC + 1.0
V
0
—
70
°C
Notes: 1. VIL min: –1.0 V for pulse width ≤ 50 ns.
2. VIH max: VCC + 1.0 V for pulse width ≤ 50 ns.
3. This function is supported by only the HN58C257A series.
DC Characteristics (Ta = 0 to +70°C, VCC = 5.0 V±10%)
Parameter
Symbol
Min
Typ
Max
1
Unit
Test conditions
µA
VCC = 5.5 V, Vin = 5.5 V
Input leakage current
I LI
—
—
2*
Output leakage current
I LO
—
—
2
µA
VCC = 5.5 V, Vout = 5.5/0.4 V
Standby V CC current
I CC1
—
—
20
µA
CE = VCC
I CC2
—
—
1
mA
CE = VIH
I CC3
—
—
12
mA
Iout = 0 mA, Duty = 100%,
Cycle = 1 µs at VCC = 5.5 V
—
—
30
mA
Iout = 0 mA, Duty = 100%,
Cycle = 85 ns at VCC = 5.5 V
Operating VCC current
Output low voltage
VOL
—
—
0.4
V
I OL = 2.1 mA
Output high voltage
VOH
2.4
—
—
V
I OH = –400 µA
Note:
1. I LI on RES = 100 µA max (only the HN58C257A series)
Capacitance (Ta = +25°C, f = 1 MHz)
Parameter
1
Input capacitance*
Output capacitance*
Note:
1
Symbol
Min
Typ
Max
Unit
Test conditions
Cin
—
—
6
pF
Vin = 0 V
Cout
—
—
12
pF
Vout = 0 V
1. This parameter is periodically sampled and not 100% tested.
5
HN58C256A Series, HN58C257A Series
AC Characteristics (Ta = 0 to +70°C, VCC = 5 V±10%)
Test Conditions
• Input pulse levels: 0.4 V to 3.0 V
0 V to VCC (RES pin*2)
• Input rise and fall time: ≤ 5 ns
• Input timing reference levels: 0.8, 2.0 V
• Output load: 1TTL Gate +100 pF
• Output reference levels: 1.5 V, 1.5 V
Read Cycle
HN58C256A/HN58C257A
-85
-10
Parameter
Symbol Min
Max
Min
Max
Unit
Test conditions
Address to output delay
t ACC
—
85
—
100
ns
CE = OE = VIL,
WE = VIH
CE to output delay
t CE
—
85
—
100
ns
OE = VIL, WE = VIH
OE to output delay
t OE
10
40
10
50
ns
CE = VIL, WE = VIH
Address to output hold
t OH
0
—
0
—
ns
CE = OE = VIL,
WE = VIH
OE (CE) high to output float*1
t DF
0
40
0
40
ns
CE = VIL, WE = VIH
RES low to output float*
t DFR
0
350
0
350
ns
CE = OE = VIL,
WE = VIH
t RR
0
450
0
450
ns
CE = OE = VIL,
WE = VIH
RES to output delay*2
6
1, 2
HN58C256A Series, HN58C257A Series
Write Cycle
Parameter
Symbol
Min*3
Typ
Max
Unit
Address setup time
t AS
0
—
—
ns
Address hold time
t AH
50
—
—
ns
CE to write setup time (WE controlled)
t CS
0
—
—
ns
CE hold time (WE controlled)
t CH
0
—
—
ns
WE to write setup time (CE controlled)
t WS
0
—
—
ns
WE hold time (CE controlled)
t WH
0
—
—
ns
OE to write setup time
t OES
0
—
—
ns
OE hold time
t OEH
0
—
—
ns
Data setup time
t DS
50
—
—
ns
Data hold time
t DH
0
—
—
ns
WE pulse width (WE controlled)
t WP
100
—
—
ns
CE pulse width (CE controlled)
t CW
100
—
—
ns
Data latch time
t DL
50
—
—
ns
Byte load cycle
t BLC
0.2
—
30
µs
Byte load window
t BL
100
—
—
µs
4
Write cycle time
t WC
—
—
10*
Time to device busy
t DB
120
—
—
ns
—
—
ns
Write start time
Reset protect time*
2, 6
Reset high time*
2
5
Test conditions
ms
t DW
0*
t RP
100
—
—
µs
t RES
1
—
—
µs
Notes: 1. t DF and t DFR are defined as the time at which the outputs achieve the open circuit conditions and
are no longer driven.
2. This function is supported by only the HN58C257A series.
3. Use this device in longer cycle than this value.
4. t WC must be longer than this value unless polling techniques or RDY/Busy (only the HN58C257A
series) are used. This device automatically completes the internal write operation within this
value.
5. Next read or write operation can be initiated after t DW if polling techniques or RDY/Busy (only the
HN58C257A series) are used.
6. This parameter is sampled and not 100% tested.
7. A6 through A14 are page address and these addresses are latched at the first falling edge of
WE.
8. A6 through A14 are page address and these addresses are latched at the first falling edge of
CE.
9. See AC read characteristics.
7
HN58C256A Series, HN58C257A Series
Read Timing Waveform
Address
tACC
CE
tOH
tCE
OE
tDF
tOE
WE
High
Data Out
Data out valid
tRR
tDFR
RES *2
8
HN58C256A Series, HN58C257A Series
Byte Write Timing Waveform (1) (WE Controlled)
tWC
Address
tCS
tAH
tCH
CE
tAS
tBL
tWP
WE
tOES
tOEH
OE
tDS
tDH
Din
tDW
High-Z
RDY/Busy *2
tDB
High-Z
tRP
tRES
RES *2
VCC
9
HN58C256A Series, HN58C257A Series
Byte Write Timing Waveform (2) (CE Controlled)
Address
tWS
tAH
tBL
tWC
tCW
CE
tAS
tWH
WE
tOES
tOEH
OE
tDS
tDH
Din
tDW
RDY/Busy
*2
tDB
High-Z
tRP
tRES
RES *2
VCC
10
High-Z
HN58C256A Series, HN58C257A Series
Page Write Timing Waveform (1) (WE Controlled)
*7
Address
A0 to A14
tAS
tAH
tBL
tWP
WE
tDL
tCS
tBLC
tWC
tCH
CE
tOEH
tOES
OE
tDH
tDS
Din
RDY/Busy *2
High-Z
tDB
tDW
High-Z
tRP
RES *2
tRES
VCC
11
HN58C256A Series, HN58C257A Series
Page Write Timing Waveform (2) (CE Controlled)
*8
Address
A0 to A14
tAS
CE
tAH
tBL
tCW
tDL
tWS
tBLC
tWC
tWH
WE
tOEH
tOES
OE
tDH
tDS
Din
RDY/Busy *2
High-Z
tRP
RES *2
VCC
12
tRES
tDB
tDW
High-Z
HN58C256A Series, HN58C257A Series
Data Polling Timing Waveform
Address
An
An
An
CE
WE
tOEH
tCE *9
tOES
OE
tDW
tOE*9
I/O7
Din X
Dout X
Dout X
tWC
13
HN58C256A Series, HN58C257A Series
Toggle bit
This device provide another function to determine the internal programming cycle. If the EEPROM is set
to read mode during the internal programming cycle, I/O6 will charge from “1” to “0” (toggling) for each
read. When the internal programming cycle is finished, toggling of I/O6 will stop and the device can be
accessible for next read or program.
Toggle bit Waveform
Notes: 1.
2.
3.
4.
I/O6 beginning state is "1".
I/O6 ending state will vary.
See AC read characteristics.
Any address location can be used, but the address must be fixed.
Next mode
*4
Address
tCE *3
CE
WE
*3
tOE
OE
tOES
tOEH
*1
I/O6
Din
Dout
Dout
tWC
14
*2
*2
Dout
Dout
tDW
HN58C256A Series, HN58C257A Series
Software Data Protection Timing Waveform (1) (in protection mode)
VCC
CE
WE
tBLC
Address
Data
5555
AA
2AAA
55
5555
A0
tWC
Write address
Write data
Software Data Protection Timing Waveform (2) (in non-protection mode)
VCC
tWC
Normal active
mode
CE
WE
Address
Data
5555 2AAA 5555 5555 2AAA 5555
AA
55
80
AA 55
20
15
HN58C256A Series, HN58C257A Series
Functional Description
Automatic Page Write
Page-mode write feature allows 1 to 64 bytes of data to be written into the EEPROM in a single write
cycle. Following the initial byte cycle, an additional 1 to 63 bytes can be written in the same manner. Each
additional byte load cycle must be started within 30 µs from the preceding falling edge of WE or C E.
When CE or WE is high for 100 µs after data input, the EEPROM enters write mode automatically and the
input data are written into the EEPROM.
Data Polling
Data polling indicates the status that the EEPROM is in a write cycle or not. If EEPROM is set to read
mode during a write cycle, an inversion of the last byte of data outputs from I/O7 to indicate that the
EEPROM is performing a write operation.
RDY/Busy Signal (only the HN58C257A series)
RDY/Busy signal also allows status of the EEPROM to be determined. The RDY/Busy signal has high
impedance except in write cycle and is lowered to V OL after the first write signal. At the end of a write
cycle, the RDY/Busy signal changes state to high impedance.
RES Signal (only the HN58C257A series)
When RES is low, the EEPROM cannot be read or programmed. Therefore, data can be protected by
keeping RES low when VCC is switched. RES should be high during read and programming because it
doesn't provide a latch function.
VCC
Read inhibit
Read inhibit
RES
Program inhibit
16
Program inhibit
HN58C256A Series, HN58C257A Series
WE, CE Pin Operation
During a write cycle, addresses are latched by the falling edge of WE or C E, and data is latched by the
rising edge of WE or CE.
Write/Erase Endurance and Data Retention Time
The endurance is 105 cycles in case of the page programming and 104 cycles in case of the byte
programming (1% cumulative failure rate). The data retention time is more than 10 years when a device is
page-programmed less than 104 cycles.
Data Protection
1. Data Protection against Noise on Control Pins (CE, OE, WE) during Operation
During readout or standby, noise on the control pins may act as a trigger and turn the EEPROM to
programming mode by mistake.
To prevent this phenomenon, this device has a noise cancellation function that cuts noise if its width is 20
ns or less.
Be careful not to allow noise of a width of more than 20 ns on the control pins.
WE
CE
VIH
0V
VIH
OE
0V
20 ns max
17
HN58C256A Series, HN58C257A Series
2. Data Protection at VCC On/Off
When VCC is turned on or off, noise on the control pins generated by external circuits (CPU, etc) may act as
a trigger and turn the EEPROM to program mode by mistake. To prevent this unintentional programming,
the EEPROM must be kept in an unprogrammable state while the CPU is in an unstable state.
Note: The EEPROM should be kept in unprogrammable state during VCC on/off by using CPU RESET
signal.
VCC
CPU
RESET
* Unprogrammable
* Unprogrammable
(1) Protection by CE, OE, WE
To realize the unprogrammable state, the input level of control pins must be held as shown in the table
below.
CE
VCC
×
×
OE
×
VSS
×
WE
×
×
VCC
×: Don’t care.
VCC: Pull-up to VCC level.
VSS : Pull-down to V SS level.
18
HN58C256A Series, HN58C257A Series
(2) Protection by RES (only the HN58C257A series)
The unprogrammable state can be realized by that the CPU’s reset signal inputs directly to the EEPROM’s
RES pin. RES should be kept VSS level during VCC on/off.
The EEPROM breaks off programming operation when RES becomes low, programming operation doesn’t
finish correctly in case that RES falls low during programming operation. RES should be kept high for 10
ms after the last data input.
VCC
RES
Program inhibit
WE
or CE
1 µs min 100 µs min
Program inhibit
10 ms min
19
HN58C256A Series, HN58C257A Series
3. Software data protection
To prevent unintentional programming, this device has the software data protection (SDP) mode. The SDP
is enabled by inputting the following 3 bytes code and write data. SDP is not enabled if only the 3 bytes
code is input. To program data in the SDP enable mode, 3 bytes code must be input before write data.
Address
Data
5555
AA
↓
↓
2AAA
55
↓
↓
5555
A0
↓
↓
Write address Write data } Normal data input
The SDP mode is disabled by inputting the following 6 bytes code. Note that, if data is input in the SDP
disable cycle, data can not be written.
Address
Data
5555
↓
2AAA
↓
5555
↓
5555
↓
2AAA
↓
5555
AA
↓
55
↓
80
↓
AA
↓
55
↓
20
The software data protection is not enabled at the shipment.
Note: There are some differences between Hitachi’s and other company’s for enable/disable sequence of
software data protection. If there are any questions , please contact with Hitachi sales offices.
20
HN58C256A Series, HN58C257A Series
Package Dimensions
HN58C256AP Series (DP-28)
Unit: mm
35.6
36.5 Max
15
13.4
14.6 Max
28
14
1.2
2.54 ± 0.25
0.48 ± 0.10
0.51 Min
1.9 Max
15.24
2.54 Min 5.70 Max
1
+ 0.11
0.25 – 0.05
0° – 15°
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
DP-28
—
Conforms
4.6 g
21
HN58C256A Series, HN58C257A Series
Package Dimensions (cont.)
HN58C256AFP Series (FP-28D)
Unit: mm
18.3
18.8 Max
15
14
1.12 Max
0.17 ± 0.05
0.15 ± 0.04
1
2.50 Max
8.4
28
11.8 ± 0.3
1.7
1.27
0.15
0.40 ± 0.08
0.38 ± 0.06
0.20 M
Dimension including the plating thickness
Base material dimension
22
0.20 ± 0.10
0° – 8°
1.0 ± 0.2
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
FP-28D
Conforms
—
0.7 g
HN58C256A Series, HN58C257A Series
Package Dimensions (cont.)
HN58C256AT Series (TFP-28DB)
Unit: mm
8.00
8.20 Max
15
1
14
11.80
28
0.55
0.22 ± 0.08
0.10 M
0.20 ± 0.06
0.45 Max
0.80
13.40 ± 0.30
Dimension including the plating thickness
Base material dimension
+0.07
0.13 –0.08
0.10
0.17 ± 0.05
0.15 ± 0.04
1.20 Max
0° – 5°
0.50 ± 0.10
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
TFP-28DB
—
—
0.23 g
23
HN58C256A Series, HN58C257A Series
Package Dimensions (cont.)
HN58C257AT Series (TFP-32DA)
Unit: mm
8.00
8.20 Max
17
1
16
12.40
32
0.50
0.08 M
Dimension including the plating thickness
Base material dimension
24
0.17 ± 0.05
0.125 ± 0.04
1.20 Max
0.10
0.80
14.00 ± 0.20
0.45 Max
0.13 ± 0.05
0.22 ± 0.08
0.20 ± 0.06
0° – 5°
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
0.50 ± 0.10
TFP-32DA
Conforms
Conforms
0.26 g
HN58C256A Series, HN58C257A Series
When using this document, keep the following in mind:
1. This document may, wholly or partially, be subject to change without notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of
this document without Hitachi’s permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any
other reasons during operation of the user’s unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and
performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for any intellectual
property claims or other problems that may result from applications based on the examples described
herein.
5. No license is granted by implication or otherwise under any patents or other rights of any third party or
Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales company.
Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are
requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL
APPLICATIONS.
Hitachi, Ltd.
Semiconductor & IC Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 3270-2111
Fax: (03) 3270-5109
For further information write to:
Hitachi America, Ltd.
Semiconductor & IC Div.
2000 Sierra Point Parkway
Brisbane, CA. 94005-1835
USA
Tel: 415-589-8300
Fax: 415-583-4207
Hitachi Europe GmbH
Continental Europe
Dornacher Straße 3
D-85622 Feldkirchen
München
Tel: 089-9 91 80-0
Fax: 089-9 29 30-00
Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA
United Kingdom
Tel: 01628-585000
Fax: 01628-585160
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia (Hong Kong) Ltd.
Unit 706, North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon
Hong Kong
Tel: 27359218
Fax: 27306071
Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.
25
HN58C256A Series, HN58C257A Series
Revision Record
Rev.
Date
Contents of Modification
Drawn by
Approved by
0.0
Jun. 19, 1995
Initial issue
Y. Nagai
T. Muto
T. Wada
1.0
May. 17, 1996
Change of format
Absolute Maximun Ratings
Addition of note 4
Recommended DC Operating Conditions
VIH (min): 3.0 V to 2.2 V
AC Characteristics
VOH (min): VCC × 0.8 V to 2.4 V
AC Characteristics
Input pulse levels: 0 V to 3.0 V to 0.4 V to 3.0 V
Data Polling Timing Waveform
Addition of note 1
Toggle bit Waveform
Addition of note 4
Y. Nagai
2.0
Feb. 27, 1997
Recommended DC Operating Conditions
VIL (max): 0.6 V to 0.8 V
Functional Description
Data Protection 3: Addition of note
Y. Nagai
K. Furusawa
3.0
May. 20, 1997
Functional Description
Data Protection 3: Change of Description
M. Terasawa
K. Furusawa
4.0
Oct. 24, 1997
Timing Waveforms
Read Timing Waveform: Correct error
26
IRF540
IRF540FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF540
IRF540FI
■
■
■
■
■
■
■
V DSS
R DS( on)
ID
100 V
100 V
< 0.077 Ω
< 0.077 Ω
30 A
16 A
TYPICAL RDS(on) = 0.045 Ω
AVALANCHE RUGGED TECHNOLOGY
100% AVALANCHE TESTED
REPETITIVE AVALANCHE DATA AT 100oC
LOW GATE CHARGE
HIGH CURRENT CAPABILITY
175oC OPERATING TEMPERATURE
APPLICATIONS
■
HIGH CURRENT, HIGH SPEED SWITCHING
■
SOLENOID AND RELAY DRIVERS
■
REGULATORS
■
DC-DC & DC-AC CONVERTERS
■
MOTOR CONTROL, AUDIO AMPLIFIERS
■
AUTOMOTIVE ENVIRONMENT (INJECTION,
ABS, AIR-BAG, LAMPDRIVERS, Etc.)
3
1
3
2
TO-220
1
2
ISOWATT220
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
IRF540
VD S
V DG R
V GS
Drain-source Voltage (V GS = 0)
100
V
Drain- gate Voltage (R GS = 20 kΩ)
100
V
± 20
Gate-source Voltage
ID
Drain Current (cont.) at Tc = 25 oC
ID
o
ID M(•)
P tot
V ISO
T stg
Tj
Unit
IRF540FI
30
V
16
A
Drain Current (cont.) at Tc = 100 C
21
11
A
Drain Current (pulsed)
120
120
A
Total Dissipation at Tc = 25 o C
150
45
W
Derating Factor
1
0.3
W/ o C
Insulation Withstand Voltage (DC)
⎯
2000
Storage Temperature
Max. Operating Junction Temperature
V
-65 to 175
o
C
175
o
C
(•) Pulse width limited by safe operating area
July 1993
1/9
IRF540/FI
THERMAL DATA
R thj-cas e
Rthj- amb
R th c-s
Tl
Thermal Resistance Junction-case
TO-220
ISOWATT220
1
3.33
Max
Thermal Resistance Junction-ambient
Max
Thermal Resistance Case-sink
Typ
Maximum Lead Temperature For Soldering Purpose
o
C/W
62.5
0.5
300
o
C/W
C/W
o
C
Max Value
Unit
o
AVALANCHE CHARACTERISTICS
Symbol
Parameter
IA R
Avalanche Current, Repetitive or Not-Repetitive
(pulse width limited by T j max, δ < 1%)
30
A
E AS
Single Pulse Avalanche Energy
(starting T j = 25 o C, ID = I AR, VD D = 25 V)
200
mJ
E AR
Repetitive Avalanche Energy
(pulse width limited by T j max, δ < 1%)
50
mJ
IA R
Avalanche Current, Repetitive or Not-Repetitive
(T c = 100 o C, pulse width limited by T j max, δ < 1%)
21
A
o
ELECTRICAL CHARACTERISTICS (Tcase = 25 C unless otherwise specified)
OFF
Symbol
V( BR)DSS
Parameter
Drain-source
Breakdown Voltage
Test Conditions
I D = 250 μA
VG S = 0
I DS S
V DS = Max Rating
Zero Gate Voltage
Drain Current (V GS = 0) V DS = Max Rating x 0.8
IG SS
Gate-body Leakage
Current (V D S = 0)
Min.
Typ.
Max.
100
Unit
V
250
1000
μA
μA
± 100
nA
Max.
Unit
2.9
4
V
0.045
0.077
Ω
T c = 125 oC
V GS = ± 20 V
ON (∗)
Symbol
Parameter
Test Conditions
V G S(th)
Gate Threshold Voltage V DS = V GS
ID = 250 μA
R DS( on)
Static Drain-source On
Resistance
V GS = 10V
ID = 17 A
I D( on)
On State Drain Current
V DS > ID( on) x RD S(on) max
Min.
2
VG S = 10 V
Typ.
30
A
DYNAMIC
Symbol
gfs (∗)
C iss
C oss
C rss
2/9
Parameter
Test Conditions
Forward
Transconductance
V DS > ID( on) x RD S(on) max
Input Capacitance
Output Capacitance
Reverse Transfer
Capacitance
V DS = 25 V
f = 1 MHz
ID = 17 A
VG S = 0
Min.
Typ.
10
18
1600
460
140
Max.
Unit
S
2100
600
200
pF
pF
pF
IRF540/FI
ELECTRICAL CHARACTERISTICS (continued)
SWITCHING RESISTIVE LOAD
Symbol
Typ.
Max.
Unit
t d(on)
tr
t d(off )
tf
Turn-on Time
Rise Time
Turn-off Delay Time
Fall Time
Parameter
V DD = 50 V ID = 5 A
VG S = 10 V
R i = 50 Ω
(see test circuit)
Test Conditions
Min.
55
110
290
125
80
160
410
180
ns
ns
ns
ns
Qg
Q gs
Q gd
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
I D = 30 A V GS = 10 V
V DD = Max Rating x 0.8
(see test circuit)
55
11
26
80
nC
nC
nC
Typ.
Max.
Unit
30
120
A
A
SOURCE DRAIN DIODE
Symbol
Parameter
Test Conditions
IS D
I SDM(•)
Source-drain Current
Source-drain Current
(pulsed)
V S D (∗)
Forward On Voltage
I SD = 30 A
Reverse Recovery
Time
Reverse Recovery
Charge
I SD = 30 A di/dt = 100 A/μs
T j = 150 o C VDD = 50 V
t rr
Q rr
Min.
VG S = 0
1.6
V
140
ns
0.7
μC
(∗) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area
Safe Operating Area for TO-220 Package
Safe Operating Area for ISOWATT220 Package
3/9
IRF540/FI
Thermal Impedance for TO-220 Package
Thermal Impedance for ISOWATT220 Package
Derating Curve for TO-220 Package
Derating Curve for ISOWATT220 Package
Output Characteristics
Transfer Characteristics
4/9
IRF540/FI
Transconductance
Static Drain-source On Resistance
Gate Charge vs Gate-source Voltage
Capacitance Variations
Normalized Gate Threshold Voltage vs
Temperature
Normalized On Resistance vs Temperature
5/9
IRF540/FI
Source-drain Diode Forward Characteristics
Unclamped Inductive Load Test Circuit
Unclamped Inductive Waveforms
Switching Time Test Circuit
Gate Charge Test Circuit
6/9
IRF540/FI
TO-220 MECHANICAL DATA
mm
DIM.
MIN.
inch
TYP.
MAX.
MIN.
TYP.
MAX.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
D1
0.107
1.27
0.050
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.067
F2
1.14
1.70
0.044
0.067
G
4.95
5.15
0.194
0.203
0.106
G1
2.4
2.7
0.094
H2
10.0
10.40
0.393
L2
0.409
16.4
0.645
L4
13.0
14.0
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.2
6.6
0.244
0.260
3.5
3.93
0.137
0.154
3.75
3.85
0.147
0.151
D1
C
D
A
E
L9
DIA.
H2
G
G1
F1
L2
F2
F
Dia.
L5
L9
L7
L6
L4
P011C
7/9
IRF540/FI
ISOWATT220 MECHANICAL DATA
mm
DIM.
MIN.
inch
MAX.
MIN.
A
4.4
TYP.
4.6
0.173
TYP.
0.181
MAX.
B
2.5
2.7
0.098
0.106
D
2.5
2.75
0.098
0.108
E
0.4
0.7
0.015
0.027
F
0.75
1
0.030
0.039
F1
1.15
1.7
0.045
0.067
F2
1.15
1.7
0.045
0.067
G
4.95
5.2
0.195
0.204
G1
2.4
2.7
0.094
0.106
H
10
10.4
0.393
L2
0.409
16
0.630
28.6
30.6
1.126
1.204
L4
9.8
10.6
0.385
0.417
L6
15.9
16.4
0.626
0.645
L7
9
9.3
0.354
0.366
Ø
3
3.2
0.118
0.126
B
D
A
E
L3
L3
L6
F
F1
L7
F2
H
G
G1
Ø
1 2 3
L2
8/9
L4
P011G
IRF540/FI
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectonics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
9/9
SFH 309
SFH 309 FA
SFH 309
SFH 309 FA
feof6653
feo06653
NPN-Silizium-Fototransistor
Silicon NPN Phototransistor
Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified
Wesentliche Merkmale
Features
● Speziell geeignet für Anwendungen im
● Especially suitable for applications from
Bereich von 380 nm bis 1180 nm
(SFH 309) und bei 880 nm (SFH 309 FA)
● Hohe Linearität
● 3 mm-Plastikbauform im LED-Gehäuse
● Gruppiert lieferbar
380 nm to 1180 nm (SFH 309) and of
880 nm (SFH 309 FA)
● High linearity
● 3 mm LED plastic package
● Available in groups
Anwendungen
● Lichtschranken für Gleich- und
Wechsellichtbetrieb
● Industrieelektronik
● “Messen/Steuern/Regeln”
Applications
● Photointerrupters
● Industrial electronics
● For control and drive circuits
Semiconductor Group
1
01.97
SFH 309
SFH 309 FA
Typ
Type
Bestellnummer
Ordering Code
Typ (*vorher)
Type (*formerly)
Bestellnummer
Ordering Codes
SFH 309
Q62702-P859
SFH 309 FA
(*SFH 309 F)
Q62702-P941
SFH 309-3
Q62702-P997
SFH 309 FA-2
(*SFH 309 F-2)
Q62702-P174
SFH 309-4
Q62702-P998
SFH 309 FA-3
(*SFH 309 F-3)
Q62702-P176
SFH 309-5
Q62702-P999
SFH 309 FA-4
(*SFH 309 F-4)
Q62702-P178
SFH 309-61)
Q62702-P1000
SFH 309 FA-5
(*SFH 309 F-51))
Q62702-P180
1)
1)
Eine Lieferung in dieser Gruppe kann wegen Ausbeuteschwankungen nicht immer sichergestellt werden.
Wir behalten uns in diesem Fall die Lieferung einer Ersatzgruppe vor.
Supplies out of this group cannot always be guaranteed due to unforseeable spread of yield. In this case we
will reserve us the right of delivering a substitute group.
Grenzwerte
Maximum Ratings
Bezeichnung
Description
Symbol
Symbol
Wert
Value
Einheit
Unit
Betriebs- und Lagertemperatur
Operating and storage temperature range
Top; Tstg
– 55 ... + 100
°C
Löttemperatur bei Tauchlötung
Lötstelle ≥ 2 mm vom Gehäuse,
Lötzeit t ≤ 5 s
Dip soldering temperature ≥ 2 mm distance
from case bottom, soldering time t ≤ 5 s
TS
260
°C
Löttemperatur bei Kolbenlötung
Lötstelle ≥ 2 mm vom Gehäuse,
Lötzeit t ≤ 3 s
Iron soldering temperature ≥ 2 mm distance
from case bottom, soldering time t ≤ 3 s
TS
300
°C
Kollektor-Emitterspannung
Collector-emitter voltage
VCE
35
V
Kollektorstrom
Collector current
IC
15
mA
Kollektorspitzenstrom, τ < 10 µs
Collector surge current
ICS
75
mA
Semiconductor Group
2
SFH 309
SFH 309 FA
Grenzwerte
Maximum Ratings (cont’d)
Bezeichnung
Description
Symbol
Symbol
Wert
Value
Einheit
Unit
Verlustleistung, TA = 25 °C
Total power dissipation
Ptot
165
mW
Wärmewiderstand
Thermal resistance
RthJA
450
K/W
Kennwerte (TA = 25 °C, λ = 950 nm)
Characteristics
Bezeichnung
Description
Symbol
Symbol
Wert
Value
SFH 309
SFH 309 FA
900
Einheit
Unit
Wellenlänge der max. Fotoempfindlichkeit
Wavelength of max. sensitivity
λS max
860
Spektraler Bereich der Fotoempfindlichkeit
S = 10 % von Smax
Spectral range of sensitivity
S = 10 % of Smax
λ
380 ... 1150 730 ... 1120 nm
Bestrahlungsempfindliche Fläche (∅ 240 µm) A
Radiant sensitive area
nm
0.2
0.2
mm2
Abmessung der Chipfläche
Dimensions of chip area
L×B
L×W
0.45 × 0.45
0.45 × 0.45
mm × mm
Abstand Chipoberfläche zu Gehäuseoberfläche
Distance chip front to case surface
H
2.4 ... 2.8
2.4 ... 2.8
mm
Halbwinkel
Half angle
ϕ
± 12
± 12
Grad
deg.
Kapazität, VCE = 0 V, f = 1 MHz, E = 0
Capacitance
CCE
5.0
5.0
pF
Dunkelstrom
Dark current
VCE = 25 V, E = 0
ICEO
1 (≤ 200)
1 (≤ 200)
nA
Semiconductor Group
3
SFH 309
SFH 309 FA
Die Fototransistoren werden nach ihrer Fotoempfindlichkeit gruppiert und mit arabischen
Ziffern gekennzeichnet.
The phototransistors are grouped according to their spectral sensitivity and distinguished
by arabian figures.
Bezeichnung
Description
Symbol
Symbol
Wert
Value
-2
Fotostrom, λ = 950 nm
Photocurrent
Ee = 0.5 mW/cm2, VCE = 5 V
SFH 309:
Ev = 1000 Ix, Normlicht/
standard light A, VCE = 5 V
IPCE
IPCE
-3
-4
Einheit
Unit
-5
0.4 ... 0.8 0.63 ... 1. 1.0 ... 2.0 1.6 ... 3.2 mA
25
1.5
4.5
7.2
mA
2.8
Anstiegszeit/Abfallzeit
Rise and fall time
IC = 1 mA, VCC = 5 V,
RL = 1 kΩ
tr, tf
5
6
7
8
µs
Kollektor-EmitterSättigungsspannung
Collector-emitter saturation
voltage
IC = IPCEmin1) × 0.3,
Ee = 0.5 mW/cm2
VCEsat
200
200
200
200
mV
1)
1)
IPCEmin ist der minimale Fotostrom der jeweiligen Gruppe
IPCEmin is the min. photocurrent of the specified group
Directional characteristics Srel = f (ϕ)
Semiconductor Group
4
SFH 309
SFH 309 FA
Semiconductor Group
5
SFH 309
SFH 309 FA
Relative spectral sensitivity,
SFH 309 Srel = f (λ)
Relative spectral sensitivity,
SFH 309 FA Srel = f (λ)
Photocurrent
IPCE = f (Ee), VCE = 5 V
Total power dissipation
Ptot = f (TA)
Photocurrent
IPCE = f (VCE), Ee = Parameter
Dark current
ICEO = f (VCE), E = 0
Dark current
ICEO = f (TA), VCE = 25 V, E = 0
Capacitance
CCE= f (VCE), f = 1 MHz, E = 0
Photocurrent
IPCE/IPCE25o = f (TA), VCE = 5 V
Semiconductor Group
6
P-CHANNEL ENHANCEMENT
MODE VERTICAL DMOS FET
ZVP2106A
ISSUE 2 – MARCH 94
FEATURES
* 60 Volt VDS
* RDS(on)=5Ω
ID(On) -On-State Drain Current (Amps)
ID(On) -On-State Drain Current (Amps)
TYPICAL CHARACTERISTICS
-3.5
VGS=
-20V
-18V -14V
-3.0
-2.5
-12V
-2.0
-10V
-1.5
-9V
-8V
-1.0
-7V
-6V
-0.5
-5V
-4V
0
0
-10
-20
-30
-40
-50
-2.0
-1.8
VGS=
-10V
-1.6
-1.4
-1.2
-9V
-1.0
-8V
-0.8
-7V
-0.6
-6V
-0.4
-5V
-4V
-3.5V
-0.2
0
0
VDS - Drain Source Voltage (Volts)
VDS-Drain Source Voltage (Volts)
-8
-6
-4
ID=
-1A
-2
-0.5A
-0.25A
0
-2
-4
-6
-8
-10
-1.0
VDS=-10V
-0.8
-0.6
-0.4
PARAMETER
SYMBOL
VALUE
UNIT
Drain-Source Voltage
V DS
-60
V
Continuous Drain Current at T amb=25°C
ID
-280
mA
Pulsed Drain Current
I DM
-4
A
Gate Source Voltage
V GS
± 20
V
Power Dissipation at T amb=25°C
P tot
700
mW
Operating and Storage Temperature Range
T j :T stg
-55 to +150
°C
PARAMETER
SYMBOL MIN.
Drain-Source Breakdown
Voltage
BV DSS
-60
Gate-Source Threshold
Voltage
V GS(th)
-1.5
MAX. UNIT CONDITIONS.
V
I D=-1mA, V GS=0V
-3.5
V
ID=-1mA, V DS= V GS
-0.2
0
-2
-4
-6
-8
-10
Gate-Body Leakage
I GSS
20
nA
V GS=± 20V, V DS=0V
Zero Gate Voltage Drain
Current
I DSS
-0.5
-100
µA
µA
V DS=-60 V, V GS=0
V DS=-48 V, V GS=0V, T=125°C (2)
On-State Drain Current(1)
I D(on)
A
V DS=-18 V, V GS=-10V
5
Ω
V GS=-10V,I D=-500mA
mS
V DS=-18V,I D=-500mA
-1
Static Drain-Source On-State R DS(on)
Resistance (1)
Forward Transconductance
(1)(2)
2.6
-2.0
ID-Drain Current (Amps)
On-resistance v drain current
ABSOLUTE MAXIMUM RATINGS.
ELECTRICAL CHARACTERISTICS (at Tamb = 25°C unless otherwise stated).
-1.2
-7V -8V -9V -10V
-1.0
2.4
2.2
n)
(o
DS
2.0
1.8
1.6
1.4
Dr
1.2
1.0
Gate Thresh
old
0.8
0.6
eR
nc
ta
sis
e
eR
rc
ou
-S
n
ai
VGS=-10V
ID=-0.5A
VGS=VDS
ID=-1mA
Voltage VGS
(th
)
-40 -20
0
20 40 60 80 100 120 140 160 180
Tj-Junction Temperature (°C)
Normalised RDS(on) and VGS(th) vs Temperature
3-418
S
E-Line
TO92 Compatible
VGS-Gate Source Voltage (Volts)
5
1
-0.1
D
G
-10
Transfer Characteristics
Normalised RDS(on) and VGS(th)
RDS(ON) -Drain Source Resistance (Ω)
-6V
-8
-1.4
VGS-Gate Source Voltage (Volts)
VGS=-5V
-6
-1.6
Voltage Saturation Characteristics
10
-4
Saturation Characteristics
ID(On)-On-State Drain Current (Amps)
Output Characteristics
0
-2
VDS - Drain Source Voltage (Volts)
-10
ZVP2106A
g fs
150
Input Capacitance (2)
C iss
100
pF
Common Source Output
Capacitance (2)
C oss
60
pF
Reverse Transfer
Capacitance (2)
C rss
20
pF
Turn-On Delay Time (2)(3)
t d(on)
7
ns
Rise Time (2)(3)
tr
15
ns
Turn-Off Delay Time (2)(3)
t d(off)
12
ns
Fall Time (2)(3)
tf
15
ns
V DS=-18V, V GS=0V, f=1MHz
V DD ≈-18V, I D=-500mA
(1) Measured under pulsed conditions. Width=300µs. Duty cycle ≤2%
(2) Sample test.
3-417
Switching times measured with 50Ω source impedance and <5ns rise time on a pulse generator
(
3
)
P-CHANNEL ENHANCEMENT
MODE VERTICAL DMOS FET
ZVP2106A
ISSUE 2 – MARCH 94
FEATURES
* 60 Volt VDS
* RDS(on)=5Ω
ID(On) -On-State Drain Current (Amps)
ID(On) -On-State Drain Current (Amps)
TYPICAL CHARACTERISTICS
-3.5
VGS=
-20V
-18V -14V
-3.0
-2.5
-12V
-2.0
-10V
-1.5
-9V
-8V
-1.0
-7V
-6V
-0.5
-5V
-4V
0
0
-10
-20
-30
-40
-50
-2.0
-1.8
VGS=
-10V
-1.6
-1.4
-1.2
-9V
-1.0
-8V
-0.8
-7V
-0.6
-6V
-0.4
-5V
-4V
-3.5V
-0.2
0
0
VDS - Drain Source Voltage (Volts)
VDS-Drain Source Voltage (Volts)
-8
-6
-4
ID=
-1A
-2
-0.5A
-0.25A
0
-2
-4
-6
-8
-10
-1.0
VDS=-10V
-0.8
-0.6
-0.4
PARAMETER
SYMBOL
VALUE
UNIT
Drain-Source Voltage
V DS
-60
V
Continuous Drain Current at T amb=25°C
ID
-280
mA
Pulsed Drain Current
I DM
-4
A
Gate Source Voltage
V GS
± 20
V
Power Dissipation at T amb=25°C
P tot
700
mW
Operating and Storage Temperature Range
T j :T stg
-55 to +150
°C
PARAMETER
SYMBOL MIN.
Drain-Source Breakdown
Voltage
BV DSS
-60
Gate-Source Threshold
Voltage
V GS(th)
-1.5
MAX. UNIT CONDITIONS.
V
I D=-1mA, V GS=0V
-3.5
V
ID=-1mA, V DS= V GS
-0.2
0
-2
-4
-6
-8
-10
Gate-Body Leakage
I GSS
20
nA
V GS=± 20V, V DS=0V
Zero Gate Voltage Drain
Current
I DSS
-0.5
-100
µA
µA
V DS=-60 V, V GS=0
V DS=-48 V, V GS=0V, T=125°C (2)
On-State Drain Current(1)
I D(on)
A
V DS=-18 V, V GS=-10V
5
Ω
V GS=-10V,I D=-500mA
mS
V DS=-18V,I D=-500mA
-1
Static Drain-Source On-State R DS(on)
Resistance (1)
Forward Transconductance
(1)(2)
2.6
-2.0
ID-Drain Current (Amps)
On-resistance v drain current
ABSOLUTE MAXIMUM RATINGS.
ELECTRICAL CHARACTERISTICS (at Tamb = 25°C unless otherwise stated).
-1.2
-7V -8V -9V -10V
-1.0
2.4
2.2
n)
(o
DS
2.0
1.8
1.6
1.4
Dr
1.2
1.0
Gate Thresh
old
0.8
0.6
eR
nc
ta
sis
e
eR
rc
ou
-S
n
ai
VGS=-10V
ID=-0.5A
VGS=VDS
ID=-1mA
Voltage VGS
(th
)
-40 -20
0
20 40 60 80 100 120 140 160 180
Tj-Junction Temperature (°C)
Normalised RDS(on) and VGS(th) vs Temperature
3-418
S
E-Line
TO92 Compatible
VGS-Gate Source Voltage (Volts)
5
1
-0.1
D
G
-10
Transfer Characteristics
Normalised RDS(on) and VGS(th)
RDS(ON) -Drain Source Resistance (Ω)
-6V
-8
-1.4
VGS-Gate Source Voltage (Volts)
VGS=-5V
-6
-1.6
Voltage Saturation Characteristics
10
-4
Saturation Characteristics
ID(On)-On-State Drain Current (Amps)
Output Characteristics
0
-2
VDS - Drain Source Voltage (Volts)
-10
ZVP2106A
g fs
150
Input Capacitance (2)
C iss
100
pF
Common Source Output
Capacitance (2)
C oss
60
pF
Reverse Transfer
Capacitance (2)
C rss
20
pF
Turn-On Delay Time (2)(3)
t d(on)
7
ns
Rise Time (2)(3)
tr
15
ns
Turn-Off Delay Time (2)(3)
t d(off)
12
ns
Fall Time (2)(3)
tf
15
ns
V DS=-18V, V GS=0V, f=1MHz
V DD ≈-18V, I D=-500mA
(1) Measured under pulsed conditions. Width=300µs. Duty cycle ≤2%
(2) Sample test.
3-417
Switching times measured with 50Ω source impedance and <5ns rise time on a pulse generator
(
3
)
ZVP2106A
TYPICAL CHARACTERISTICS
300
gfs-Transconductance (mS)
gfs-Transconductance (mS)
300
250
VDS=-10V
200
150
100
50
0
250
150
100
50
0
0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0
0
Transconductance v drain current
60
Ciss
40
Coss
20
Crss
0
-30
-40
VGS-Gate Source Voltage (Volts)
C-Capacitance (pF)
80
-20
-4
-6
-8
-10
Transconductance v gate-source voltage
100
-10
-2
VGS-Gate Source Voltage (Volts)
ID- Drain Current (Amps)
0
VDS=-10V
200
0
-2
-4
VDS=
-20V -30V -50V
-6
-8
-10
-12
-14
-16
0
-50
VDS-Drain Source Voltage (Volts)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Q-Charge (nC)
Capacitance v drain-source voltage
Gate charge v gate-source voltage
3-419