Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Identificazione di geni responsabili di malattie genetiche: l’esempio del braccio corto del cromosoma X Brunella Franco, TIGEM and Universita’ “Federico II, Naples, Italy [email protected] MAP= LINEAR ORDER OF KNOWN ELEMENTS PHYSICAL MAP GENETIC MAP - Polymorphic markers GENE MAP - Genes - DNA clones SEQUENCE MAP - A,C, T,G CYTOGENETIC MAP - Chromosome bands DISEASE MAP - Disease loci Mappe fisiche • Yeast artificial chromosomes (YAC) 500-1000kb • Bacterial artificial chromosomes (BAC) 120-150kb • P-1 derived artificial chromosomes (PAC) 120-150kb • Cosmidi 40-60kb • Fagi 10-20kb Mappe genetiche • Stabiliscono la posizione di markers polimorfici sul genoma • Sono basate sulle distanze genetiche ottenute con lo studio della frequenza di ricombinazione Timeline of large-scale genomic analyses GENE IDENTIFICATION MUTATION IDENTIFICATION MOLECULAR DIAGNOSIS PROTEIN FUNCTION GENE EXPRESSION DRUG THERAPY GENE THERAPY General strategies for identifying human disease genes • Functional cloning • Positional cloning • Position-independent candidate gene approaches • Positional candidate gene approaches Biochemical basis known Purificatio Function n protein al test product Unknown biochemical basis Positional Cloning Insights from Animal models Candidate genes Functional Cloning Chromosomal localization Positional candidate, candidate gene approach Functional cloning This approach relies on the knowledge of the function of an unidentified disease gene in order to identify the responsible gene. Two approaches are used: A) those which depend on the availability of the purified gene product B) and those for which a functional assay is required (Complementation test). This approach has been useful in only a few cases. Functional cloning Complementation test Complementation of the pathological phenotype observed in cells with DNA fragments or normal human chromosomes E.g.: Cloning of the gene for Fanconi Anemia and Multiple Sulfatase deficiency Analisi di complementazione FA-A FA-A FA-B Fusione Fusione FA fenotipo wt fenotipo Clonaggio Funzionale Libreria di cDNA Trasfezione Selezione con MMC e DEB Cellule FA Isolamento del DNA episomale Gene FA MULTIPLE SULFATASE DEFICIENCY CLINICAL FEATURES: A combination of features of all individual sulfatase deficiencies (various types of mucopolysaccharidoses, metachromatic leukodystrophy, ichthyosis etc…) INHERITANCE PATTERN: Autosomal recessive BIOCHEMICAL FEATURE: Deficiency of all measured sulfatase activities (attivita delle solfatasi e’ misurabile nelle cellule) Problems: - Protein involved unknown - No patient with chromosomal abnormality - No familial cases suitable to perform linkage mapping Microcell Mediated Chromosome Transfer DONOR CELLS: Mouse/human monochromosome hybrids (HPRT deficient with Hygrom. resistant human chromosomes 1 to 22) Micronucleation and enucleation MMCT x x MSD cells XMMCT γ irradiation selection Microcells selection MSD cells Double selection of hybrid clones with Hygromicin B and HAT Complementation test: ARSA, ARSB, and ARSC enzymatic assay Microsatellites analysis identification of the complementing chromosome or of the minimal chromosome complementing region The gene mutated in MSD maps to chromosome 3p26 D3S3630 D3S2397 3p26.2 3p26.1 2.4 Mb ILR5A TRNT1 LOC1185 KIAA1497 SUMF1 SETMAR AK075459 IPTR1 Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A. Cell 2003 Functional cloning Purification of the protein product A) Gene fragments are obtained through sequencing after isolation of the protein product E.g.,: cloning of the gene for Hemophilia A (FVIII) B) Use of Specific antibodies E.g.,: cloning of the gene for PKU due to X-linked icthyosis due to STS deficiency CLINICAL FEATURES • scaly skin (ichthyosis) • hypogonadotropic hypogonadism • inability to smell (anosmia) CLONING OF STEROID SULFATASE (STS) cDNA cDNA SOURCE: Library prepared from human placenta mRNA in λGT11 vector PROBE USED: Anti-STS polyclonal antibodies NUMBER OF P.F.U. SCREENED = 100,000 NUMBER OF POSITIVE RECOMBINANTS AFTER IMMUNOSCREENING = 6 two positive clones were mapping to the X chromosome one to the Xp22.3 region STS Ballabio A, et al. “Isolation and characterization of a steroid sulfatase cDNA clone: genomic deletions in patients with X-chromosome-linked ichthyosis”. Proc Natl Acad Sci USA, 84: 4519-4523, 1987. Male patients with Xp22 deletions and transloca Clinical features SS CDPX Interstitial deletions Terminal deletions, X/Y translocations MRX XLI KAL OA1 1 1 >100 1 2 2 1 1 1 1 ~ 20 ~ 10 1 Cell line (BA number) 169 311 364 59 Chromosomal abnormality X;Y X;Y X;Y X;Y Locus Probe STS PABX 39 GM3 63 + + + M115 120 + + + DXS1145 YHX2-R 2 + + + + DXS31 M1A 56 + + + DXS89 pTAK10 54 + + DXS1060 AFM205tf2 62 + + + GM37 110 + + + + DXS996 AFM212xe5 61 + + + EST 01879 72 + + + + M15 126 + + + + DXS1139 S232A2 3 br MP d 82 + DXS1130 A117C12e 7 STS STS 5'untr. 4 + + STS STSexon10 5 DXS1131 GX4HL 48 + DXS1133 X04A 6 + + GM57 128 + + + DXS237 GMGX9 8 + DXS1132 GX3RL 47 + DXF22S1 G1.3a 11 sWXD600 104 + + + DXS278 S232B 10 DXS1134 S232C 13-14 KAL KALexon9 15 + KAL KALexon3 79 DXF22S2 G1.3b 16 + DXS1138 B255C2-L 17 XF10H1.3 19 DXS143 dic 56 20 DXS404 P4 21 GM12 65 sWXD166 98 DXS187 pHAX5 55 DXS1137 210B5-R 22 DXS1140 113E10-R GM6 66 DXS410 P45 23 DXS1136 61B3-L 74 DXS70 18-55 24 61 120 16 ID X;Y ID 18 ID 19 ID 20 TD 23 ID 88 139 91 115 338 75 175 304 35 46 ID X;Y X;Y ID X;Y X;Y X;Y X;Y X;Y X;Y - + + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + + + - + + - - + + (+) - + + + + + + + + + + + + + + - + + - + + - (+) + + (+) + - - - - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - + 63 ID - + + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + - 71 ID - + - 13 ID + + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + - - - - - - + + + + + + + + + + + + - + + + + + 80 ID + + + - 57 TD + + + - + + - - - - + + + + + + + + + + + + + + + + + Xp22.3 disease genes Xp22 .3 .2 .1 SS Short stature CDPX X-linked recessive chondrodysplasia punctata MRX X-linked mental retardation STS X-linked ichthyosis (STS deficiency) KAL X-linked Kallmann syndrome OA1 Ocular albinism type 1 Biochemical basis known Purificatio Function n protein al test product Unknown biochemical basis Position al Cloning Insights from Animal models Candidate genes Functional Cloning Chromosomal localization Positional candidate, candidate gene approach Positional cloning Isolating the gene knowing only its chromosomal location, without using any information about the pathogenesis or the biochemical function. The general approach is to to built physical and genetic maps of the critical region, refine the subchromosomal localization, and then identify genes in the region to investigate as candidate genes. Positional cloning remains ardous, and is becoming unnecessary as information accumulates which allows a positional candidate gene approach. Positional cloning Definition of the critical region Linkage analysis Loss of heterozygosity (LOH) Chromosomal abnormalities Positional cloning. Definition of the critical region Linkage analysis On the basis of the linkage studies a disease gene is assigned to a cromosomal region by virtue of the cosegregation with a locus located to the same chromosomal region. Drawback: Availability of adequate families and informative markers Positional cloning. Definition of the critical region Chromosomal abnormalities: • Translocations and inversions • Deletions and duplications Karyotyping Fluorescent in situ hybridization (FISH) Array CGH Molecular studies Positional cloning. Identification of candidate genes within the critical region Transcription maps CpG islands Zoo Blotting cDNA selection Exon trapping DNA sequencing ESTs search Genome project. Databases searching Xp22.3 disease genes Xp22 .3 .2 .1 SS Short stature CDPX X-linked recessive chondrodysplasia punctata MRX X-linked mental retardation STS X-linked ichthyosis (STS deficiency) KAL X-linked Kallmann syndrome OA1 Ocular albinism type 1 Male patients with Xp22 deletions and translocations Clinical features SS CDPX Interstitial deletions Terminal deletions, X/Y translocations MRX XLI KAL OA1 1 1 >100 1 2 2 1 1 1 1 ~ 20 ~ 10 1 KALLMANN SYNDROME MAIN CLINICAL FEATURES hypogonadotropic hypogonadism due to Gn-RH deficiency and inability to smell (anosmia) ADDITIONAL FINDINGS unilateral renal aplasia or hypoplasia and neurological abnormalities INHERITANCE PATTERN X-linked recessive, autosomal recessive and autosomal dominant CLINICAL FEATURES • hypogonadotropic hypogonadism • inability to smell (anosmia) Kallman Syndrome Critical Region defined by deletion mapping (1989-1991) S232C T E L YAC2R 50 Kb KAL t(X;Y) 2 t(X;Y) 1 C E N Junction fragment Zoo blotting with the junction fragment Franco B, et al. “A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules”. Nature 353: 529-536, 1991. Xp22.3 disease genes Xp22 .3 .2 .1 SS Short stature CDPX X-linked recessive chondrodysplasia punctata MRX X-linked mental retardation STS X-linked ichthyosis (STS deficiency) KAL X-linked Kallmann syndrome OA1 Ocular albinism type 1 X-Linked recessive Chondrodysplasia Punctata (CDPX) CLINICAL FEATURES PATHOGENENESIS Unknown Facial dysmorphism (nasal hypoplasia), epiphyseal stippling in early infancy, distal phalangeal hypoplasia PHYSICAL MAP OF THE CDPX REGION (1992-1994) Xpter BA311 705-4 DXF28F1 455R 511L 455-2 19H-2 DXS284 19H-1 455L NB6R 19H12 (440Kb) NB6F12 (320Kb) 455B10 (290Kb) YACs 511A5 (480Kb) 481C6 (290kb) 18 Cosmids Exon trapping products 32 76 66 75 58 48 96 357L BA126d PABX BA169 BA364 CDPX (650-700kb) 21-L Alignment of exon 76.15 with sulfatases 3 36 30 20 5 44 23 26 6 51 RPNVVLLLTDDQD-EVLGGMT ALNVLLIIVDDLR-PSLGCYG PPNILLLLMDDMGWGDLGVYG PPNIVLIFADDLGYGDLGCYG PPNILLIFADDLGYGDLGSYG PPHLVFLLADDLGWNDVGFHG PPHLVFVLADDLGWNDVSFHG RPNIILVMADDLGIGDPGCYG GPNFLLIMADDLGIGDLGXYG KPNILLIMADDLGTGDLGCYG KPNVVLLVADDMGSGDLTSYG KPNVVVFLLDDVGWMDVGFNG RPNVIVIIADDMGYSDISPFG G6S IDS Gal6S ARSA ARSA m.musc. ARSB ARSB cat ARSC ARSC rat Exon 76.15 SU-ARS ARS-A/B coli ARS-A/B Kleb. PHYSICAL MAP OF THE CDPX REGION Xpter BA311 705-4 DXF28F1 455R 511L 455-2 19H-2 DXS284 19H-1 455L NB6R 19H12 (440Kb) NB6F12 (320Kb) 455B10 (290Kb) YACs 511A5 (480Kb) 481C6 (290kb) 18 Cosmids Genes 32 76 66 75 58 48 ARSD ARSE 96 ARSF 357L BA126d PABX BA169 BA364 CDPX (650-700kb) 21-L ARSE mutations in CDPX Patient Nucl eoti de Change BA 440 BA 337 BA 339 BA 396 BA 383 G G G G G C A C T C A mi no A ci d Substi tuti on A rg12 Gl y117 A rg111 Gl y137 Gl y245 Ser A rg Pro Val A rg Exon 2 4 4 4 5 Franco B, et al. “A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin Embryopathy”. Cell 81: 1-20, 1995. Xp22.3 disease genes Xp22 .3 .2 .1 SS Short stature CDPX X-linked recessive chondrodysplasia punctata MRX X-linked mental retardation STS X-linked ichthyosis (STS deficiency) KAL X-linked Kallmann syndrome OA1 Ocular albinism type 1 Nettleship-Falls type ocular albinism (OA1) • Inheritance : X-linked • Prevalence: 1:50,000 • Eyes : Albino pupillary reflex ,Depigmented fundus and prominent choroidal vessels, Foveal hypoplasia, Nystagmus, Photophobia,Impaired vision, Impaired stereoscopic vision • Skin : Normal pigmentation • Histological analysis : Abnormally giant melanosomes, called macromelanosomes • Optic nerve defect : Reduction of ispilateral component of the optic tract Positional cloning of the gene responsible for OA1 CEN TEL 0 0.1 0.2 0.3 0.4 0.5 0.6 131D2 0.7 0.8 0.9 1 Mb YACS A118A8 187H6 COSMIDS OA1 APXL BA127 BA163 BA38 BA199 OA1 CRITICAL REGION PATIENTS COMPARISON OF MELANOSOMAL SIZE IN WILD-TYPE AND Oa1 MUTANT RPE P5 P7 Incerti B, Oa1 knock-out: new insights on the pathogenesis of ocular albinism type 1. Hum Mol Genet. 2000 Nov 22;9(19):2781-8. Surace EM, et al., “Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer”. Mol Ther. 2005 Oct;12(4):652-8. Male patients with Xp22 deletions and transloca Clinical features SS CDPX Interstitial deletions Terminal deletions, X/Y translocations MRX XLI KAL OA1 1 1 >100 1 2 2 1 1 1 1 ~ 20 ~ 10 1 BK CLINICAL FEATURES • Short stature • Nasal hypoplasia • Focal calcif. of cartilage SS CDPX • Distal phalangeal hyp • Mental retardation • Scaly skin (ichthyosis) • Hypog hypogonadism • Anosmia MRX XLI KAL • Impaired visual acuity • Nystagmus, strabismus • Photophobia OA1 Analysis of a terminal Xp22.3 deletion in a patient with six monogenic disorders: implications for the mapping of X linked ocular albinism A Meindl, D Hosenfeld, W Brückl, S Schuffenhauer, J Jenderny, A Bacskulin, H-C Oppermann, O. Swensson, P Bouloux, T Meitinger Positional cloning. Identification of candidate genes within the critical region Transcription maps CpG islands Zoo Blotting cDNA selection Exon trapping DNA sequencing ESTs search Genome project. Databases searching The death of Positional Cloning: “THE POSITIONAL CANDIDATE GENE APPROACH” Positional candidate gene approach Once a disease has been mapped, it is possible to use database searches to identify candidate genes. Positional candidate gene approach Position dependent Position independent Position-independent candidate gene approach A candidate gene for a human disorder may be suggested without any knowledge of the chromosomal location. This can happen if the phenotype resembles another phenotype in animals or humans for which the gene is know, or if the molecular pathogenesis suggests that the gene may be a member of a known gene family. Such approaches have only rarely been succesful, and have been overtaken by a positional candidate gene approaches E.g.: cloning of the genes responsible for spinocerebellar ataxia 8 (SCA8, Kobb et al 1999); rodhopsin for Retinitis pigmentosa, Waardenburg syndrome type 2 (MITF, Hughs et al 1994) and IV (SOX10, Pingault et al., 1998) Positional candidate gene approach Position dependent Position independent http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=O GENES A B C Tissue specificity Imprinting Sequence domains Instability D E Developmental expression Mouse synteny DISEASES The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. a b c d e Anticipation Developmental defect Tissue involved Biochemical defect Mouse model Imprinting Positional Candidate Gene Approach CANDIDATE DISEASES CANDIDATE GENES Biochemical defect Sequence domains Tissue involved Expression pattern Imprinted inheritance Imprinted expression Developmental defect Developmental expression Mouse model Mouse syntheny ORAL-FACIAL-DIGITAL SYNDROME TYPE I (MIM 311200) • OFDI is characterized by malformations of the face, oral cavity and digits. Distinctive clinical signs are polycystic kidneys and skin and hair anomalies (alopecia and miliary skin lesions) • Inheritance: X-linked dominant, male lethal • Occurrence: Possibly 1:250.000 Identification of the gene responsible for OFDI DXS85 MID1 3 Xp22 2 19.8 cM MSL3L1 1 MAEG RAB9 Cxorf-5 (71-7A) Xq22 OFD1 Pirin STK9 DXS7105 Ferrante MI et al. “Identification of the gene for oral-facial-digital type I (OFDI) syndrome”. Am. J. Hum. Genet. 68: 569-576, 2001. Mutation analysis in OFDI patients 843 delTT 857delG* 875-876del 837-838delAA* 400-403del 432insT *702delA 788insG *702 insA 380-2c>g 311-312insG *312delG *294-312del *432insT 11+2t>c 2 E97K Q83X R41X S74F H81D *A79T 3 1173insA 1190-1194del *1193 insT 412+2del IVS5-10t>g 312+2del 1 5 6 Q113X Y226X 7 1268-1272del 1318delC 1409delA 1452-1458del *1071-1078del IVS10-2a>t 603 insA 4 *1411+1 g>a 2055delT 1757delG 2038 insA 2175delC 1978-1979delTC 1887-1888insAT 8 9 K291X 10 10a 11 12 13 14 15 16 17 18 19 20 21 22 23 Q474X *R367Q S434R *Q275X Q152X *N352K New Mutations * PKD Mutations reported by other groups Possibile uso dell’NGS nella diagnostica delle malattie genetiche 1) Targeted resequencing: sequenziamento ristretto (es. un gene molto grande o un gruppo di geni): quando si ha un forte sospetto sull’identita’ del gene responsabile 2) Whole Exome sequencing: sequenziamento di tutte le regioni codificanti di tutti i geni del genoma: quando non si hanno sospetti sul gene responsabile o per abbattere i costi del targeted resequencing 3) Whole Genome sequencing: tutto il genoma, ancora molto costoso, piu’ “semplice” metodologicamente Per arrivare al primo abbozzo (draft) di sequenziamento completo del genoma umano sono occorsi piu’ di 10 anni a un costo di circa 3 miliardi di dollari. HOW MANY GENES ARE THERE IN THE HUMAN GENOME? Nature 431, 931 - 945 (21 October 2004) Organism complexity and gene number Escherichia coli Saccharomyces cerevisiae Caenorhabditis elegans Drosophila melanogaster Danio rerio Mus musculus 3,200 6,300 19,100 13,600 21,322 22,000 Homo sapiens 22,000 Fugu rubripes Arabidopsis thaliana Tetrahymena thermophila 26,700 25,000 27,000 Gene number does not correlate with evolutionary status What is the difference among a man, a tetrahymena, a mouse and Arabidopsis thaliana? The difference is not mainly determined by the number of genes in the genome but rather by the different ways these genes are used and the different protein variants they encode The human genome - 46 chromosomes - 20,000-25,000 genes - 3.000.000.000 nucleotides - about 2% corresponds to coding sequences What about the remaining 98%? 1) Repeat sequences (about 50%) 2) Non-transcribed DNA: regulatory elements - the example of conserved non-coding sequences 3) Transcribed DNA = non-coding RNAs: - microRNAs HUMAN-MOUSE GENOME COMPARISON - About 5% of the human genome is conserved with respect to mouse. - Yet only about one-third of the sequence under such selection is predicted to encode proteins WHAT IS THE FUNCTIONAL ROLE OF CNCs? Nature 431, 988 - 993, 2004 PLoS Biol. 2007 Sep;5(9):e234. CNCs and genetic diseases (1) -Mutations in CNCs can be responsible for human genetic diseases, mostly by genomic rearrangements (see examples below) Am J Hum Genet. 2005 January; 76(1): 8–32. CNCs and genetic diseases (2) -Also point mutations in CNCs can be responsible for human genetic Diseases Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence (an important subgroup of autosomal dominant forms of cleft palate). Nature Genetics 41, 359 - 364 (2009) What about the remaining 98%? 1) Repeat sequences (about 50%) 2) Non-transcribed DNA: regulatory elements - the example of conserved non-coding sequences 3) Transcribed DNA = non-coding RNAs: - microRNAs The expanding world of non-coding RNAs Different types of non-coding RNAs Housekeeping rRNA = ribosomal RNA; tRNA = transfer RNA; snRNA = small nuclear RNA (including spliceosomal RNA) snoRNA = small nucleolar RNA (rRNA modification); Regulatory Long non-coding RNAs (including a significant fraction of Natural Antisense Transcripts, NATs) microRNA; piRNAs microRNAs microRNAs are 21-25 nucleotide small RNAs that negatively regulate the expression of their TARGET genes in animals. They exert this function by binding with imperfect base pairing to target sites in the 3’-UTR of messenger RNAs To date, over 1000 microRNAs are annotated in the human genome. microRNAs regulate various developmental and physiological processes. A specific function has already been demonstrated in limb, skin, lung and brain development. Transcript degradation or translational repression Biogenesis and function of microRNAs Pri-miRNA= primary microRNA Pre-miRNa= precursor microRNA miRNA= mature microRNA MicroRNA regulate various developmental and physiological processes. A specific function has already been demonstrated in limb, skin, lung and brain development. From He & Hannon (2004) Nature Rev Gen 5, 522-531 Genomic organization of microRNAs MicroRNAs can be: a) intragenic, i.e., located within transcriptional units (host genes), more frequently in their intronic regions and more rarely within exonic regions Host gene b) intergenic. miRNA gene 1 gene 2 miRNA -The majority of microRNAs are intragenic (over 50%) -the expression profiles of intragenic miRNAs are highly correlated to those of their corresponding host genes, in most cases miR-184 miRNAs can have diverse expression patterns, similar to proteincoding genes Karali et al, Invest Ophthalmol Vis Sci., 48(2): 509-15 (2007). More than 1000 microRNAs identified in mouse and humans http://microrna.sanger.ac.uk/sequences/ microRNAs To understand their biological role it is necessary to identify their targets and define their expression pattern How to identify microRNA targets? By computational approaches, how? Several computational approaches have been developed for the prediction of miRNA targets based on SEED analysis. However, none of them can be considered completely reliable all predictions must be experimentally validated. microRNA Possibili ruoli biologici Processi di sviluppo e differenziamento cellulare Evidenze in vitro HeLA cells Transfection with miR-1 (muscleenriched) Up-regulation of muscle-specific genes HeLA cells Transfection with miR-1 (muscleenriched) Transfection with miR-124 (neuronenriched) Up-regulation of neuron-specific genes Down-regulation of direct targets Up-regulation of muscle-specific genes microRNA Possibili ruoli biologici Processi di sviluppo e differenziamento Evidenze in vivo Sovraespressione di miR-1 mediante generazione di topi transgenici miR-1 Hand2 Alterazione del corretto sviluppo dei cardiomiociti Regolazione del diferenziamento dei cardiomiociti microRNA Possibili ruoli biologici Funzione di tessuti maturi Un microRNA, specificamente espresso nelle isole pancreatiche, miR-375, controlla la secrezione di insulina modulando l’espressione del gene target miotrofina. Nature 432: 226-30, 2004 L’inattivazione del microRNA miR-1-2 (mediante la generazione di topi knockout) determina difetti della conduzione elettrica riscontrabili mediante analisi elettrocardiografica. Cell 129: 303-17, 2007 microRNA in malattie genetiche I microRNA possono avere un ruolo nelle patologie umane? 1) Cancro 2) Malattie monogeniche 3) Malattie multifattoriali Ruolo dei miRNA nel cancro microRNA e cancro I profili di espressione dei miRNA sono alterati nelle cellule neoplastiche rispetto alle corrispondenti cellule normali Calin and Croce, Nature Rev Cancer 2006 microRNA e cancro Le miRNA signatures consentono un’accurata classificazione dei tumori • tipo cellulare • diagnosi • staging • prognosi • risposta alle terapie Lu et al. Nature 2005 microRNA e cancro Aumentata espressione del cluster di microRNA 17-92 in varie forme di cancro (linfomi, medulloblastomi, etc.) microRNA e cancro Cell Cycle 9:6, 1031-1036; March 15, 2010 Azione esercitata tramite regolazione, come target diretti degli oncogeni c-Met, Notch-1 and Notch-2. I microRNA possono avere un ruolo nelle malattie monogeniche? microRNA and genetic diseases Genomic rearrangements involving miRNA Mutations in miRNA mature sequences pri-miRNA Allelic ablation of specific miRNA * Ex: miR-361 in Choroideremia microRNA miRNA * Target mRNA 3’UTR pre-miRNA involvement in human genetic disorders Mutations in miRNA target sites miRNA (A)n Target mRNA 3’UTR * Imperfect Target Recognition Ex: REEP1 in Hereditary Spastic Paraplegia Ex: miR-96 in DFNA40 (A)n Genomic rearrangements involving miRNAs Nature genetics, doi:10.1038/ng.915 Phenotype: microcephaly, short stature and digital abnormalities microRNA and genetic diseases Genomic rearrangements involving miRNA in monogenic diseases are more numerous than commonly believed Common aneuploidy syndromes involving microRNAs PathoGenetics 2009, 2:7 microRNA and genetic diseases Genomic rearrangements involving miRNA Mutations in miRNA mature sequences pri-miRNA Allelic ablation of specific miRNA * Ex: miR-361 in Choroideremia microRNA miRNA * Target mRNA 3’UTR pre-miRNA involvement in human genetic disorders Mutations in miRNA target sites miRNA (A)n Target mRNA 3’UTR * Imperfect Target Recognition Ex: REEP1 in Hereditary Spastic Paraplegia Ex: miR-96 in DFNA40 (A)n microRNA and genetic diseases Mutation in the microRNA mature sequence Two different point mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss microRNA e malattie genetiche Mutation in the microRNA mature sequence Am J Hum Genet. 2011 Oct 11. microRNA and genetic diseases Genomic rearrangements involving miRNA Mutations in miRNA mature sequences pri-miRNA Allelic ablation of specific miRNA * Ex: miR-361 in Choroideremia microRNA miRNA * Target mRNA 3’UTR pre-miRNA involvement in human genetic disorders Mutations in miRNA target sites miRNA (A)n Target mRNA 3’UTR * Imperfect Target Recognition Ex: REEP1 in Hereditary Spastic Paraplegia Ex: miR-96 in DFNA40 (A)n microRNA and genetic diseases Mutations in miRNA target sites Two different possibilities: 1) A mutation can affect a pre-existing microRNA target site (removal or increase of a physiological inhibition) 2) A mutation can create a novel microRNA target site (“pathological” inhibition) MicroRNAs and genetic disease 1) Mutations affecting a pre-existing microRNA target site (removal or increase of a physiological inhibition) Two different point mutations in the 3'-UTR of the REEP1 gene which have been associated with an autosomal dominant form of hereditary spastic paraplegia (SPG31) alter the sequence of a predicted target site for miR-140 microRNA e malattie genetiche Mutazioni in siti di target per microRNA Human Molecular Genetics, 2010, 19: 2015–2027 MicroRNAs and genetic disease 2) Mutations creating a novel microRNA target site (“pathological” inhibition) Nature Genetics, 38: 813-18 (2006) Ipertrofia muscolare in questo ceppo di pecora (mutante spontaneo) Identificazione, tramite analisi di linkage, del locus responsabile, comprendente il gene della miostatina (azione inibitoria sulla crescita delle cellule muscolari) Analisi di mutazione: nessuna mutazione nella sequenza codificante della miostatina MA riscontro di una mutazione puntiforme nel 3’-UTR che crea un aberrante sito di target per il microRNA miR-1, altamente espresso in muscolo. Questa mutazione determina inibizione della miostatina e conseguente ipertrofia muscolare