Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
2/7/2013 Autoregulation of Nodulation Soybean (Glycine max) GmRIC1 regulates nodulation in wild-type bean (Phaseolus vulgaris), but not in a supernodulating line found to be mutated in Nodule Autoregulation Receptor Kinase (PvNARK) Brett Ferguson, Li D, Hastwell AH, Reid DE, Li Y, Jackson S, and Peter Gresshoff • Nodule Autoregulation (AON) is controlled by the shoot and root • Regulation is dependent on NARK and systemic signals travelling to and from the roots • NARK is a LRR receptor kinase, similar to CLAVATA1 in Arabidopsis which perceives CLE peptides and modulates SAM activity NARK Q SDI Inoculated wild-type NARK-dependent nodule regulation A Figure 1. Phaseolus vulgaris wildtype, OAC Rico, and its supernodulation Pvnark mutant, R32. A) Shoot and B) root phenotypes of 2 month-old OAC Rico (left) and R32 (right), inoculated with Bradyrhizobium japonicum. B Reid et al, 2011. Ann Bot Two weeks Two months 1 2/7/2013 A PvNARK GmNARK B C MRNGVCYRLL WKFSTSLSAH LTITQNNLTG DAYDNNFIGQ STNSLSGKIP SCNLSGEIPP GLTGEIPQSF SFVLPPNLGQ QIPDDIGNCK PPEISGDSLG VFVLPMLTTV NLTDLSILNV VFSDKSFEGN IATAALLVAV IGKGGAGIVY NIMRLLGYVS AARGLCYLHH SQSMSSIAGS FGDGVDIVGW MMCVREMGPA FLVLVWFSVA CLFPGVTCDQ QLPKELAALT LPEEFVKLEK ESLSRLKTLK SLSSLKKLDT SQLRNLTLMN NGRLKFFDVT SLVKIRASNN ILTLSNNLLT NISGNNLTGA SRNLITGPIP PNLCSSRSCP TVYMMRRRML RGSMPNGTDV NKETNLLLYE DCSPLIIHRD YGYIAPAEYA INKTRLEISP RPTMREVVHM KCSSFSDMDA DLRVVAINVS SLKLLNISHN LRYLKLDGNY YLKLGYNNAY LFLQMNNLTG FFHNKLSGSV TNHFTGLIPP YLSGAIPSGI GRIPPALKNL IPTTLIHCVS DEIRFMASLT NSSMYPDDAF HRAMTWKLTA AIKRLVGAGS YMPNGSLGEW VKSNNILLDE YTLKVDEKSD PSDAALVLAV LTNPPHSTTH LRKLKDSMKG FVPLFGNLPP SFSHYFPGQS FSGSIPESYS EGGIPPEFGA TIPSEFSAME PAFVGELPNL GLCKSGRLQT FKLPSVKIIE RALQTLSLDA LSSVDLSRNM TLDLSYNNFK RRRRGPWSSK FQRLNWKAED GRNDYGFRAE LHGAKGGHLR NFEAHVADFG VYSFGVVLLE VDPRLSGYPL THNHNLINL* AKAKDDALHD EIGHFDKLQN FLPITQLEVF EFKSLEFLSL MKSLIYLDLS SLMSLDLSFN ETLQLWENNF FLITDNFFHG LANNRFDGEL NELVGEIPGE LVGEIPKGIK GKLPTGGQFF QTRAIITVIA VVECLKEENI IETLGKIRHR WEMRFKIAVE LAKFLHDPGA LIIGRKPVGE TSVIYMFNIG 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 990 GmNARK PvNARK LjHAR1 MtSUNN PsSYM29 Figure 2. The Nodulation Autoregulation Receptor Kinase of Phaseolus vulgaris. A) Phytozome cluster analysis of the genomic environments of PvNARK and GmNARK reveal a well conserved region of synteny existing between the two species. A truncated version of NARK (dark purple) is located directly upstream of PvNARK, but not GmNARK. B) PvNARK is comprised of four domains: leucine-rich repeat-containing N-terminal signal peptide (red), leucine-rich repeats (blue), transmembrane (yellow) and serine/threonine kinase (green). C) Phylogenetic tree of PvNARK and its orthologues in soybean (GmNARK), Lotus japonicus (LjHAR1), Medicago truncatula (MtSUNN) and pea (PsSYM29). PvNARK cDNA sequence (2970 bp) ATGGATGCTTTGCGGAAGCTGAAGGACTCCATGAAAGGAGCCAAAGCCAAAGACGATGCTCTTCACGATTGGAAGTTCTCCACCTCGCTTT CCGCACACTGTTTATTTCCTGGTGTTACGTGTGATCAAGACCTTCGAGTCGTTGCTATCAACGTCTCCTTCGTTCCACTCTTCGGCAACCTT CCGCCGGAGATTGGACACTTCGACAAACTCCAAAACCTAACCATCACGCAGAACAACCTCACCGGCCAGCTTCCCAAGGAGCTCGCTGCCCT CACTTCCCTCAAGCTCCTCAACATCTCTCACAACTCCTTCTCCCACTATTTTCCCGGCCAAAGCTTTCTTCCCATCACCCAACTCGAGGTTT TCGACGCCTACGACAACAACTTCATCGGACAGCTTCCGGAGGAATTCGTGAAACTGGAGAAACTCCGATACCTCAAGCTAGACGGAAATTAC TTTTCCGGCAGCATACCGGAGAGCTACTCCGAGTTTAAGAGCTTGGAGTTTTTGAGCTTAAGCACTAACAGTTTGTCGGGGAAGATTCCCGA GAGTTTGTCTCGGTTGAAGACGCTGAAGTATCTAAAACTC High conservation. Structure and Function GGATACAACAACGCTTACGAAGGTGGAATCCCGCCGGAGTTCGGCGCCA TGAAATCTCTTATATACCTTGACCTATCTAGCTGCAACCTCAGCGGCGAGATTCCACCGAGCTTGAGCAGTTTGAAGAAACTTGACACGTTG TTCTTGCAAATGAACAACCTTACCGGAACCATTCCTTCTGAATTCTCGGCGATGGAGAGCCTCATGTCACTGGATCTCTCCTTCAACGGTCT CACTGGAGAGATCCCGCAGAGTTTCTCTCAGCTCAGAAACCTCACTCTCATGAACTTCTTCCACAACAAGCTTAGCGGCTCTGTTCCCGCCT TCGTCGGCGAGCTTCCGAATCTGGAAACGCTGCAACTCTGGGAAAACAACTTCTCCTTCGTGCTGCCCCCGAATCTGGGCCAAAACGGGAGG TTAAAGTTTTTCGACGTCACGACCAATCACTTCACCGGGTTGATCCCTCCGGGTTTGTGCAAGAGTGGGAGGTTACAAACCTTCCTCATCAC CGACAACTTCTTTCACGGTCAAATCCCTGATGATATTGGAAACTGCAAGTCTCTCGTCAAGATCCGAGCCTCCAATAACTACCTCAGCGGCG CCATTCCCTCAGGAATTTTCAAACTGCCTTCGGTCAAGATAATCGAACTCGCGAACAACCGTTTCGACGGCGAACTGCCACCGGAGATTTCC GGCGATTCTCTTGGGATTCTCACGCTTTCCAACAACTTGCTGACGGGGAGAATTCCCCCGGCGTTGAAGAACTTGAGGGCACTGCAGACACT CTCACTCGACGCGAACGAGTTGGTTGGAGAAATCCCGGGGGAGGTTTTTGTCTTACCAATGCTAACCACCGTCAACATAAGCGGCAACAATC TGACTGGAGCAATCCCAACGACGCTGATTCACTGCGTTTCACTCTCCTCCGTGGACCTCAGCAGGAACATGCTCGTCGGGGAGATTCCGAAA GGCATAAAAAACCTCACGGACTTAAGCATTTTGAATGTCTCCAGAAACCTGATAACAGGGCCAATCCCCGACGAGATTCGGTTCATGGCAAG CCTCACAACGCTGGATCTCTCCTACAACAATTTCAAAGGCAAGCTCCCTACGGGTGGCCAGTTTTTTGTGTTCAGCGACAAGTCCTTTGAAG GGAACCCCAATCTCTGTTCCTCCCGCTCTTGCCCTAATTCCTCCATGTACCCTGACGACGCCTTCAGAAGAAGGCGCGGCCCTTGGAGTTCT AAGCAAACGAGGGCGATAATCACCGTGATCGCAATAGCCACAGCGGCGCTGCTGGTGGCGGTGACGGTGTACATGATGCGAAGGAGGATGCT GCACCGGGCGATGACGTGGAAGCTGACGGCGTTCCAGCGGCTGAACTGGAAAGCGGAGGACGTGGTGGAGTGTCTGAAGGAAGAGAACATCA TAGGAAAAGGAGGGGCGGGAATCGTGTACCGCGGCTCCATGCCAAATGGAACCGACGTGGCTATAAAGCGGTTGGTTGGGGCGGGTAGCGGG AGAAACGATTACGGTTTCAGGGCTGAGATAGAAACGCTGGGGAAGATAAGGCACAGAAACATAATGAGGCTTCTGGGTTACGTGTCGAACAA GGAGACAAATCTGCTGCTTTACGAGTACATGCCGAATGGGAGCTTGGGAGAGTGGCTGCATGGGGCGAAGGGAGGGCACTTAAGGTGGGAGA TGAGGTTCAAGATTGCAGTGGAAGCTGCTAGAGGACTCTGCTACTTGCACCATGATTGTTCCCCTCTCATCATTCACAGAGACGTCAAATCC AACAATATATTGCTCGACGAAAACTTCGAAGCCCATGTCGCCGATTTCGGACTTGCCAAGTTCCTCCACGACCCAGGTGCCTCTCAGTCCAT GTCCTCCATTGCTGGCTCCTACGGCTACATTGCTCCAGCAGAGTATGCTTACACGTTGAAAGTGGACGAGAAAAGCGATGTGTACAGCTTCG GGGTGGTGCTGCTGGAGCTGATAATAGGGAGAAAACCAGTGGGGGAGTTTGGAGATGGAGTGGACATCGTTGGATGGATCAACAAAACGAGA TTGGAGATCTCTCCGCCGTCGGATGCAGCGTTGGTGTTGGCAGTGGTGGATCCAAGGCTCAGTGGGTATCCATTGACAAGTGTGATTTACAT GTTCAATATTGGGATGATGTGTGTTAGGGAAATGGGCCCAGCCAGGCCCACCATGAGGGAAGTGGTTCACATGCTCACCAATCCTCCTCACT CCACCACTCACACTCACAACCACAACCTCATTAATCTC TAA Coding sequence of NARK in bean (Phaseolus vulgaris) and R32 mutant A Mutant change at amino-acid level Intron SP Polar, Uncharged Q106* nts1007 LRR L346F nod3-7 K115* nts246 G198E R32 B Polar, Acidic G198E V370D nod4 TM K606* en6500 Kinase W677* & L829V F262 G863D nod1-3 Q920* nts382 V837A nts1116 Known NARK mutations in soybean (Glycine max) and bean (Phaseolus vulgaris). A) Illustration of the NARK protein structure depicting known mutations, including the location, amino acid change and mutant name. Mutations are shown for bean (orange arrow) and various lines of soybean (grey arrows), including the F262 mutant (olive green arrows), which was recently isolated from a TILLING population (Batley et al. 2012) and contains two separate mutations. Not shown is the FN37 mutant of Glycine soja (wild soybean), which was generated using fast neutron technology and is completely devoid of the NARK gene (Searle et al. 2003). B) Phyre modeling (Kelley and Strenberg 2009) (based on PDB: 1ZIW) of the NARK leucine-rich repeat domain of bean. The site of the mutated amino acid residue (G198E; highlighted in orange) of the supernodulation mutant, R32, is depicted flanking the central cleft of the LRR domain that likely defines the ligand binding site. 2 2/7/2013 A 500 B 400 500 400 300 300 200 200 100 100 *** 0 OAC Rico WT Control control OAC Rico WT RIC1 GmRIC1 ox *** 0 R32 R32 Control control R32 R32 RIC1 GmRIC1 ox Hairy-root over-expression of the soybean AON CLE peptide, GmRIC1, in bean and its effect on nodule formation. Nodulation of OAC Rico (wild type) hairy roots over-expressing GmRIC1 was significantly inhibited compared with those induced with the vector-only control (P < 0.001). In contrast, nodule numbers were not reduced in R32 mutant plants. Error bars indicate mean ± standard error (SE) (n = 10-12). OAC Rico WT Control control OAC Rico WT RIC1 GmRIC1 ox R32 R32 Control control R32 R32 RIC1 GmRIC1 ox Hairy-root over-expression of the soybean AON CLE peptide, GmRIC1, in bean and its effect on nodule formation. Nodulation of OAC Rico (wild type) hairy roots over-expressing GmRIC1 was significantly inhibited compared with those induced with the vector-only control (P < 0.001). In contrast, nodule numbers were not reduced in R32 mutant plants. Error bars indicate mean ± standard error (SE) (n = 10-12). Conclusions: 1) CLE peptides related to Arabidopsis CLAVATA3 peptide act as regulators of nodule development in legumes. 2) Peptide gene GmRIC1 when overexpressed in wild type bean (Phaseolus vulgaris) suppresses nodule number. 3) Bean has an AON (Autoregulation of Nodulation) gene called PvNARK, similar to other legume AON genes. 4) R32 is a PvNARK missense mutant (Gly to Glu) that prevents CLE peptide suppression. 5) AON and its components (receptors, signals) are shared in legumes. 3