Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
E.P.S.O Genetic improvement of wheat quality for animal feeding NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T World cereal production and uses • Wheat is the most widely grown worldwide • Its use for animal feeding is about 10% wordlwide, but 30% in Europe Alim. animale Semences Alim. humaine Exportations Stock Source : ONIC NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Animal feeding requirements • Cereals are primarily a source of ENERGY (starch), mostly for monogastics (unable to use cellulose). Animal production (profitability) is correlated to •Low cost = yield, low inputs •High digestibility: problem of viscosity for poultry • Protein content may be of interest (depending of the price/availability of other sources): if not conflicting with yield • Protein quality (composition): lysin and methionin • Mineral availability: phytase activity NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Yield and protein content How to deal with the (genetic) negative correlation NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T RENDEMENT-TENEUR EN PROTEINES SUR VALEURS MOYENNES essais avec bles ameliorants FERTILISATION N+: correlation = -0.83 FERTILISATION N: correlation = -0.85 Comparaison des 2 regressions : F(2,25) = 50 (P<0.001) 13 CF511 EC511 Courtot 12 CF503 EC511 CF511 EC506 EC513 Monopol Renan CF407 Qualital Alidos Busard EC514 Courtot 11 EC514 EC513 EC506 Monopol Alidos Renan Recital CF407 Busard Qualital Soissons Soissons Recital 10 teneur en proteines (%) 14 CF503 70 75 NUTRITION - FOOD 80 AGRICULTURE rendement (q/ha) E N V I R O N NM E N T 85 COMBINED INDEX SELECTION ON YIELD AND PROTEIN Up to now, protein % has rarely been used as selection criterion. Use of quantitative genetics tools to predict the expected response to index selection with various economic weights W given to Yield vs Protein - Genetic material: breeding lines of INRA programme. Genetic correlation -0.75 - Selection intensity = 20% (best lines crossed). - Expected response to selection estimated from G and P variance-covariance matrices. Gain = i * P-1 * G * W NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T SELECTION SUR RENDEMENT ET TENEUR EN PROTEINES With current payment for extra-protein % (bread-wheat: 3€/T) prise en compte des 2 caracteres dans un index de selection Optimum economic weight leads to improve only yield (0.4T/cycle) Scenario 1: prix de base = 90 E/t + 1.5 E par demi-point de proteines au-dela de 10.5% Correlative response of protein content is -0.4% per cycle Gains a l'optimum: rendement = 0.53 proteines = -0.41 revenu = 39.2 gain attendu pour le revenu par hectare (optimum = 78) 40 0.4 80 poids du rendement dans l'index de selection 0 40 Euros 0 20 -0.4 tonne/hectare gain attendu pour le rendement -20 0.4 -0.4 pourcent gain attendu pour la teneur en proteines 0 40 80 poids du rendement dans l'index de selection 0 20NUTRITION 40 - FOOD60 AGRICULTURE 80 poids donne ENVIR O N NMau E Nrendement T dans l'index de selection 100 SELECTION SUR RENDEMENT ET TENEUR EN PROTEINES To achieve a balanced response on both yield and protein content, prise en compte des 2 caracteres dans un index de selection Extra payment for protein should be 12€/T/% 2: prix de base = 90 E/t + 6 E par demi-point de proteines au-dela de 10.5% Yet Scenario the expected response would be limited (0.25T/ha and 0.3% prot) Gains a l'optimum: rendement = 0.12 proteines = 0.18 revenu = 31.1 25 poids du rendement dans l'index de selection -0.4 10 0.4 gain attendu pour la teneur en proteines 20 80 15 40 Euros 0 pourcent gain attendu pour le revenu par hectare (optimum = 50) 30 0.4 -0.4 tonne/hectare gain attendu pour le rendement 0 40 80 poids du rendement dans l'index de selection 0 20NUTRITION 40 - FOOD 60 AGRICULTURE 80 poids E N V I donne R O N NMau E Nrendement T dans l'index de selection 100 How to conciliate yield and protein INTER-STATIONS 1991-2002 (moyennes sur aucontent? moins 8 resultats) Identification of breeding lines or cultivars with positive seuil = 1.96 effectif = 54 ; coeff. de correlation = -0.71 grain deviation moyenne rdt = protein 91.9 moyenne prot = 11.8 (GPD) y = 21.06 + -0.101 x CF99351 RE9209 VM9207 RE9201 CF99102 CF9107 RE9205 CF9309 RE9204 CF9103 CF99105 CF99075 12 EM99012 VM9203 CF9414 VM9209 VM9205 DI9714 RE9819 CF99031RE99017 DI9304 VM9014 CF00189 RE01002 EM00002 DI9812 CF99005 DI00024 DI00010 DI9404 CF9825 EM00015 EM00018 DI9403 DI9428 EM99006CF9621 EM99017 RE99001 CF9703 VM9516 RE99009 RE9707 CF9804 CF9717 11 apache RE99003 RE99004 RE9510 RE9607 CF9608 VM9409 VM9517 isengrain VM9510 VM9509 VM9401 VM9402 10 teneur en proteines (%) 13 CF00193 VM9202 VM9601 VM9601 80 85 90 NUTRITION - FOOD AGRICULTURE 95 E N V I R O N NM E N T rendement (q/ha) 100 DIGESTIBILITY Problems with pentosan viscosity in poultry Genetics of cell walls composition NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Factors affecting starch digestion Starch granule structure Protein matrix Access problems . . . .. ... ... .. ......... ... .... Cell walls in particles . . .. . . .. .. .... . .. . ... . . .. . . ... . . . . . . . .. .. ...... ... ... . . ... .. . . . .. . .. .... ................ ....... .. Viscosity . .. ..... . .. ...... . . . . . . α-amylase . . .. . . ..... ........ .. . .......... .. . . . ..... . . . .. . ... . ......... . . . . . . .... ... . . .......... ... ... ..... .... . . . . . . ....... ... . .. . . . . Tannins . .. . .. ..... . .. α-amylase inhibitors NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Effect of kernel hardness Carré et al 2005, British poultry Sci 46:66-74 • Particle size ranges from ~500 µm (soft varieties) to ~900 µm (hard wheats). • As expected, starch digestibility is negatively correlated to grain hardness (r=-0.56) • Consequently, Apparent Metabolisable Energy (AMEN) is also negatively correlated • However, grain hardness is strongly correlated to pellet durability (r=0.84), which is often considered as a desired trait to reduce food spillage NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Relationship between wheat starch digestibility and particle size of wheat flours before pelleting Starch digestibility % 97 y = 95.5 - 0.41x ; R^2 = 0.42 95 93 91 89 87 0 2 4 6 8 10 % coarse particles (>1600 μ m) NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T After Carré et al. 2002 5 DS Xmta9 Xfba393b Xfbb238b Xksud30 Xcdo412b Xbcd1874 Xcdo1508 Xbcd450a A major gene for kernel hadness Xbcd1103 Sourdille et al 1996 TAG Xfbb100 Xbcd1670b Xbcd1421 Xfba11a Xcdo506 5 DL 0 10 20 30 40 r2 VALUE ( % ) 50 60 NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Effect of viscosity (RAV) of wheats (55% in diets) on starch digestibility in 3 w. broiler chickens. Digestibility % 90 Effect of wheat RAV: P = 0.008 80 70 Assay 1 Assay 2 60 After Carré et al. 2002 0 1 2 3 NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T RAV (mL/g DM) Problems with viscosity in birds diet • A high dietary viscosity reduces the digestibility of the various components • Causes inflammation of the intestinal mucosa, and induces over-consumption of water in birds (Carré et al, 1994). • This over-consumption leads to more aqueous excreta which exacerbate both sanitary and environmental pollution problems (Carré et al, 1995). NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Arabinoxylans and β-D-glucans are the major components of wheat endosperm cell walls and have impacts on processing and nutrition % cell wall arabinoxylan 70 (1→3)(1→4)β-glucan 20 glucomannan 2-7 cellulose 2-4 ferulic acid X-X-X-X–X AA A A A A F X X X • • are polymers of Mr 104-106 • • • have high affinity for water • F A Cell wall fibre A A X occur in water-soluble and water insoluble (ferulic acid cross-linked) forms form viscous solutions affect intestinal absorption of lipids have other effects on colon bacteria and composition NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T 60 50 40 30 20 10 0 Fréquence 30 Fréquence 20 10 s. .. pl u ou 0. 54 0. 47 0. 41 0. 35 60 50 40 30 20 10 0 Flour TAXI equivalents (ppm)1 s. .. pl u ou 0. 13 41 0. 10 83 0. 08 25 0. 05 67 Fréquence 0. 03 09 0. 00 51 ou pl u s. .. 10 0. 8 85 69 .2 53 .4 Fréquence A/X in WE-AX Fréquence 37 .6 0. 28 5 0. 22 ou pl u s. .. 1. 17 9 0. 97 8 0. 77 6 0. 57 5 40 35 30 25 20 15 10 5 0 21 .8 40 0 WE-AX (% ) Fréquence Fréquence 50 0. 37 0. 17 Fréquence Range of variation in bread wheat core- collection Flour Xylanase activity (EU/g) NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T INTER-STATIONS 1999 4.5 Choice of two contrasted breeding lines to develop doubled haploids effectif = 33 r2 = 0.87 moyenne x = 3.1= 0.87, moyenne y = 2.5 high h² NB r² between years means 3.5 RE99018 DI9714 DI9812 3.0 CF99003 RE9819 EM99006 CF99031 CF9804 CF99027 EM99003 2.0 2.5 CF9825 AO99001 EM99027 EM99002 EM99001 CF99009 RE99016 Soissons RE99009 1.5 viscosite potentielle Le Moulon 4.0 CF99007 h² estimates 0.75 +-0.10 Martinant et al 1999 J Cereal Sc 30:45-48 CF99016 EM99017 RE99001 RE99002 CF99005 RE99004 EM99021 CF9717 EM99012 RE99007 RE99014 RE99003 RE99006 2.0 2.5 3.0 - FOOD 3.5 NUTRITION4.0 AGRICULTURE viscosite potentielleEClermont N V I R O N NM E N T 4.5 5.0 POPULATION RE99006 x CF99007 (annee 2003) 40 Distribution of potential viscosity in R6C7 DH population (harvest 2004) 0 10 CF99007 RE99006 20 30 DNAchip hybridization to find differentially expressed ESTs between high vs low pentonan lines 1 2 NUTRITION - FOOD 3 AGRICULTURE viscosite potentielle E N V I R O N NM E N T 4 1B 1B QTL analyses 7A gpw2067d** 16.1 gwm260 gwm413 18 10 37 9 19 gwm456** gwm131a cfa2028 gwm060 39 gpw2233 gwm403a 17 18.8 gwm233 SPA (GluB1) 39 23.2 gwm268** gwm471 18 cfa2219 20.5 7.9 13.9 gpw1077** cfa2292*** gwm259** gwm063 viscosity r²=18% 28.5 cfa2019 NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T viscosity h²=18% Search for candidate genes of endosperm cell wall composition ► UDP - D - Gal GAE UDP - D - Glc UGD UDP - D - GlcA UXS UDP - D - GlcA AXS UXS UDP - D - Api UDP - D - Xyl UDP - D - Xyl Phenylalanine or tyrosine Caffeoyl CoA Lignin pathway XS UXE CCoAOMT UDP - L - Ara COMT Feruloyl CoA ? Feruloyl Glc FCoApSFt Xylan AT AX ? CCR Conifer aldehyde Peroxidases ME Conifer aldehyde Dehydro genase ? Ferulic acid F - AX Golgi F - AX Cytoplasm Cell wall Figure 1. An overview of the pathway of AX synthesis in plant (from P.E. Sado). GT involved in this pathway are in pink boxes. Enzymes involved in early step of the AX synthesis and studied are in yellow boxes. NUTRITION - FOOD Epimerases studied in the year 1 are not represented. AGRICULTURE E N V I R O N NM E N T Identification of candidate genes involved in arabinoxylans (AX) biosynthesis Find matching EST contigs (eventually assignation NSF) Design of specific primers Assignation in deletion bin of CS Polymorphism between parents of populations Genes mapping and/or Difference in gene expression Allelic variant in core collection NUTRITION - FOOD Association SNP polymorphism / trait variation for validation AGRICULTURE E N V I R O N NM E N T Candidate genes on chromosome 7A 7A gwm260 18 10 Assignation on the deletion bin of CS cfa2028 gwm060 39 gpw2233 17 gwm233 39 gwm471 gwm063 28.5 4 genes in the bin C7AL1-0.39 QTL ITMI 7 genes in the bin AL-0.39-0.71 viscosity h²=18% cfa2019 NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T COMT GT14 Epi7 GH28 Nepi7-1 GH17 TT1 Nepi7-2a Nepi7-2b NEpi7-3 GH16 Genome and allele specific markers ► Design of specific allele primers for genotyping HG core-collection Allele 1 primer Allele 2 primer ► PCR on HG core-collection SNP1 SNP2 With allele 1 primer HGW32 SNP used to genotype HG collection With allele 2 primer HGW32 Amplification = Allele 1 HGW47 No amplification = Allele 1 HGW47 NUTRITION - FOOD AGRICULTURE No amplification = Allele 2 E N V I R O NAmplification NM E N T = Allele 2 post GENOMICS (Perfect) Marker Assisted Selection Inducing new variation NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Bioavailability of minerals Phytic acid and phytasic activity NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Genotype and environment main effects on mineral content (ANOVA: F values) ASG-2 IS Df Yield Magnesium Zinc Iron Year 2 5.9 ** 5.5 * 1.7 NS 6.6 ** Génotype 10 7.7 **** 13.7 **** 3.1 * 2.1 NS Error 20 Location 2 708 **** 71.8 **** 95.4 **** 28.1 **** Génotype 50 3.2 **** 4.8 **** 2.8 **** Error 100 NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T 1.4 NS RELATIONSHIP BETWEEN THE 3 MINERALS CONTENTS Relationship between the 3 minerals contents 1000 40 34 28 CF99351 DI02008 CF99102 DI02006CF00193 CF01196 CF99105 EM01024 RE01086 Soissons EM01288 RE01092 RE01037 EM99006 CF00108 CF01216 RE99132 EM01216 EM01328 CF00060 DI01016 EM00018 EM01063CF99005EM01150 CF00116 CF01184 DI02001 EM01325 RE02101 EM01271 EM00074 DI01022 EM00264 DI00010 EM01324 DI02028 CF01085 RE01015 CF01043 EM00107 RE01002DI02032 EM99017 EM00072 EM01023 DI02021 DI00024EM01062 1200 EM01214 EM00002 800 1000 magnesium content (ppm) magnesium content (ppm) 34 40 n = 51 correlation = 0.53 **** Fe = 15.858 + 0.921 * Zn 28 800 iron content (ppm) 22 EM01024 CF99351 CF01196 CF00193 CF99102 DI01016 CF01184 EM01325 EM01328 EM01288 EM99006 DI02008 CF99105 CF01216 CF00108 EM01150 RE99132 EM01023 EM00107 CF00060 DI02006 CF00116 Soissons EM99017 CF01043 EM00072 DI02028 EM00264 EM01062 DI01022 EM00074 CF99005 RE01037 EM01216 EM01271 RE01092 RE01086 EM01214 EM00002 RE01002 CF01085 EM00018 DI00024 RE02101EM01324 EM01063 DI00010 RE01015 DI02021 DI02032 iron content (ppm) n = 51 correlation = 0.49 *** Fe = 19.629 + 0.015 * Mg DI02001 16 zinc content (ppm) n = 51 correlation = 0.64 **** Zn = 9.03 + 0.011 * Mg DI02008 CF99351 CF99102 CF00193 EM01214 DI02006 CF99105 CF01196 EM01024 RE01086 Soissons EM01288 RE01092 RE01037 EM99006 CF00108 CF01216 RE99132 EM01216 EM01328 CF00060 DI01016 EM00018 CF99005 CF00116 CF01184 EM01150 EM01325 EM01063 RE02101 EM01271 EM00074 DI01022 EM00264 DI00010 EM01324 DI02028 CF01085 RE01015 CF01043 EM00107 EM99017 RE01002 EM00072 DI02032 EM01023 DI02021 DI00024EM01062 DI02001 EM00002 16 18 20 - FOOD 22 NUTRITION 24 26 AGRICULTURE zinc content (ppm) E N V I R O N NM E N T 1200 RANGE OF VARIATION OF MODERN LINES VERSUS COLLECTIONS Range of variation of modern lines vs collections BdDAMAR JF-H4 50 modern lines YUKICHABO BGW 76 JF-H4 TIBET26 40 NSA-1 BNChinois TEZ.PINTOSp BGW-76 CARALA BdDomes US67115 Mexique11 Azteca67 CARALA EXCELSIOR YUKICHABO 30 NSA-1 Soissons CHARTER BdPOLOGNEr BdDAMAR CONSUL LOVRIN25 BINGZHOU95-18 BGW76 Azakaze-K Mexique11 Apache Vilmorin27 THATCHER BdDAMAR EAP63A BANKUTI1201 BdDomes KLEIN66 BUCK-ATL. Azteca67 Mexique11 EAP63A TEZ.PINTOSp MARQUILLO BdPOLOGNEr BGW-76 CHARTER YANFU188 FRONTEIRA COMANCHES Azteca67 BANKUTI1201 BGW-76 Bezostaia1 TEZ.PINTOZp STARING~GB THATCHER LAURA EXCELSIOR RdSABANDO KLEIN66 FERTODI293 20 zinc content (ppm) NSA-1 BdDomes 600 800 1000 1200 NUTRITION - FOOD 1400 1600 AGRICULTURE magnesium content E N (ppm) V I R O N NM E N T 1800 BUCK-ATL. 2000 CONCLUSIONS • The genetic variability appears to be high for Mg, Zn and Fe, even in modern cultivars – experimental cross CF99102 (high-MG) x EM01216 (lowMg) • Heritability is hiigh for MG, moderate for Zn and low for Fe, fortunately all these cations are positively correlated (also with toxic ones?) • Genetic resources with high mineral content are often exotic, unadapted lines or old landraces. – Advanced backcross population developped from Apache (recurrent) x Azteca67 NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Bio-accessibility of Mg in bran: genetic variability 100 Mg solubilisé (en % de la teneur totale) Taldor (Crouel 2000) Uli 3 (Allier 2000) Supersoft BNC 1999 Sponsor 50 Aligre (C00) (Ménétrol 2001) Bonpain (M01) Scipion (M01) Soissons 0 0 20 40 60 NUTRITION - FOOD Duration of solubilisation (min) AGRICULTURE From F. Lenhardt, J. Abecassis E N V I R O N NM E N T 80 (M01) (M01) Problems with Phosphorus in animal feeds • A total of 50-70% of grain phosphorus is in the form of phytic acid phosphorus (Reddy et al, 1982). • This phytic acid phosphorus cannot be used by monogastric animals (Sauveur, 1989; Pointillart, 1994). • In consequence, the phytic acid phosphorus is not available and therefore contributes to the pollution of surface water. • Wheat, however, contains plant phytase whose activity varies depending on the variety (Sauveur, 1989; BarrierGuillot et al, 1996a and b). • This phytase is activated during digestion and liberates a substantial amount of the grain phosphorus (Frapin and Nys, 1993). • A high phytase activity is, therefore, to be sought after in wheat NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Phytase activity in Triticale Cultivar n Phytasic activity, UP / kg a DI34-2 4 1012 ± 102 a Aubrac 6 1320 ± 87 b Trimaran 6 1424 ± 125 b Capitale 4 1815 ± 126 c Calao 6 2146 ± 145 d NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T A low phytic acid mutant in maize (lpa241) NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Carotenoid Pathway IPP βLCY Lycopene GGPP y1 βLCY εLCY PSY Phytoene vp5 PDS Phytofluene 2x ζ- carotene vp9 β-carotene OH β-cryptoxantin α-carotene OH OH ZDS Neurosporene 2x OH Zeaxanthin OH NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T Lutein Contributions from • G Charmet, FX Oury UMR1095 Plant Genetics and breeding Clermont-Ferrand F • B Carré et al, Poultry Research Unit, Nouzilly F • L Saulnier et al, UMR Biopolymers Nantes F NUTRITION - FOOD AGRICULTURE E N V I R O N NM E N T