Download Bivariate Noremal Distribution Let the pair of random variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Bivariate Noremal Distribution
Let the pair (𝑋, π‘Œ) of random variables follow a bivariate normal distribution. Then the probability
density function of (𝑋, π‘Œ) is
𝑓𝑋,π‘Œ (π‘₯, 𝑦) =
1
2πœ‹πœŽ1 𝜎2 √1 βˆ’ 𝜌2
𝑒
βˆ’
1
π‘₯βˆ’πœ‡1 2
π‘₯βˆ’πœ‡1 π‘¦βˆ’πœ‡2
π‘¦βˆ’πœ‡2 2
[(
) βˆ’2𝜎(
)(
)+(
) ]
𝜎1
𝜎1
𝜎2
𝜎2
2(1βˆ’πœŒ2 )
βˆ’βˆž < π‘₯ < ∞, βˆ’βˆž < 𝑦 < ∞, βˆ’βˆž < πœ‡1 < ∞, βˆ’βˆž < πœ‡2 < ∞, βˆ’1 < 𝜌 < 1.
The marginal density function of 𝑋 is
∞
𝑓𝑋 (π‘₯) = ∫ 𝑓𝑋,π‘Œ (π‘₯, 𝑦) 𝑑𝑦
βˆ’βˆž
∞
= ∫
βˆ’βˆž
∞
= ∫(
βˆ’βˆž
=(
1
2πœ‹πœŽ1 𝜎2 √1 βˆ’ 𝜌2
1
√2πœ‹πœŽ1
1
√2πœ‹πœŽ1
𝑒
βˆ’
𝑒
βˆ’
1
(π‘₯βˆ’πœ‡1 )2
2𝜎1 2
)(
1
(π‘₯βˆ’πœ‡1 )2
βˆ’
𝑒 2𝜎1 2
)
=
1
√2πœ‹πœŽ1
𝑒
1
π‘₯βˆ’πœ‡1 2
π‘₯βˆ’πœ‡1 π‘¦βˆ’πœ‡2
π‘¦βˆ’πœ‡2 2
[(
) βˆ’2𝜎(
)(
)+(
) ]
𝜎1
𝜎1
𝜎2
𝜎2
2(1βˆ’πœŒ2 )
𝑑𝑦
2
1
√2πœ‹(1 βˆ’ 𝜌2 𝜎2
∞
∫
βˆ’
1
√2πœ‹(1 βˆ’ 𝜌2 𝜎2
βˆ’βˆž
βˆ’
1
(π‘₯βˆ’πœ‡1 )2
2𝜎1 2
𝑒
βˆ’
×1 =
𝑒
1
𝜎
((π‘¦βˆ’πœ‡2 )βˆ’πœŒπœŽ2 (π‘₯βˆ’πœ‡1 ))
2(1βˆ’πœŒ2 )𝜎2 2
1
1
𝜎
(π‘¦βˆ’(πœ‡2 +𝜌 2 (π‘₯βˆ’πœ‡1 )))
𝜎1
2(1βˆ’πœŒ2 )𝜎2 2
1
√2πœ‹πœŽ1
𝑒
βˆ’
) 𝑑𝑦
2
𝑑𝑦
1
(π‘₯βˆ’πœ‡1 )2
2𝜎1 2
(The integrand under the last integral is the probability density function of a normal distribution with
𝜎
mean πœ‡2 + 𝜌 𝜎2 (π‘₯ βˆ’ πœ‡1 ) and variance (1 βˆ’ 𝜌2 )𝜎2 2. So the integral is equal to 1.)
1
So the marginal density function of 𝑋 is
1
𝑓𝑋 (π‘₯) =
(π‘₯βˆ’πœ‡1 )2
βˆ’
1
2𝜎1 2
𝑒
, βˆ’βˆž
√2πœ‹πœŽ1
< π‘₯ < ∞, βˆ’βˆž < πœ‡1 < ∞.
Similarly, the marginal density function of Y is
1
π‘“π‘Œ (𝑦) =
(π‘₯βˆ’πœ‡2 )2
βˆ’
1
𝑒 2𝜎22
, βˆ’βˆž
√2πœ‹πœŽ2
< 𝑦 < ∞, βˆ’βˆž < πœ‡2 < ∞.
So X and Y are normally distributed.
𝐸(𝑋) = πœ‡1 , π‘£π‘Žπ‘Ÿ(𝑋) = 𝜎1 2
𝐸(π‘Œ) = πœ‡2 , π‘£π‘Žπ‘Ÿ(π‘Œ) = 𝜎2 2
Consider the transformation
π‘ˆ =π‘‹βˆ’πœŒ
𝜎1
π‘Œ,
𝜎2
𝑋 =π‘ˆ+𝜌
𝑉=π‘Œ
𝜎1
𝑉, π‘Œ = 𝑉
𝜎2
The jacobian of transformation is
πœ•π‘₯
𝐽 = |πœ•π‘’
πœ•π‘¦
πœ•π‘’
πœ•π‘₯
πœ•π‘£ | = |1
πœ•π‘¦
0
πœ•π‘£
𝜌
𝜎1
𝜎2 | = 1
1
The joint density of π‘ˆ π‘Žπ‘›π‘‘ 𝑉 is
π‘“π‘ˆ,𝑉 (𝑒, 𝑣) = 𝑓𝑋,π‘Œ (π‘₯, 𝑦) × |𝐽| =
=
=
1
√2πœ‹πœŽ2
1
√2πœ‹πœŽ2
=
𝑒
βˆ’
𝑒
βˆ’
√2πœ‹πœŽ2
2πœ‹πœŽ1 𝜎2 √1 βˆ’ 𝜌2
1
(π‘¦βˆ’πœ‡2 )2
2𝜎2 2
1
(π‘£βˆ’πœ‡2 )2
2𝜎2 2
1
1
𝑒
βˆ’
𝑒
βˆ’
1
π‘₯βˆ’πœ‡1 2
π‘₯βˆ’πœ‡1 π‘¦βˆ’πœ‡2
π‘¦βˆ’πœ‡2 2
[(
) βˆ’2𝜎(
)(
)+(
) ]
𝜎1
𝜎1
πœ‡2
πœ‡2
2(1βˆ’πœŒ2 )
2
×
1
√2πœ‹(1 βˆ’ 𝜌2 𝜎1
𝑒
βˆ’
1
𝜎
((π‘₯βˆ’πœ‡1 )βˆ’πœŒπœŽ1 (π‘¦βˆ’πœ‡2 ))
2(1βˆ’πœŒ2 )𝜎1 2
2
2
×
1
√2πœ‹(1 βˆ’ 𝜌2 𝜎1
1
(π‘£βˆ’πœ‡2 )2
2𝜎2 2
×
𝑒
βˆ’
1
𝜎
𝜎
((𝑒+𝜌𝜎1 π‘£βˆ’πœ‡1 )βˆ’πœŒπœŽ1 (π‘£βˆ’πœ‡2 ))
2(1βˆ’πœŒ2 )𝜎1 2
2
2
1
√2πœ‹(1 βˆ’ 𝜌2 𝜎1
𝑒
βˆ’
2
1
𝜎
(π‘’βˆ’(πœ‡1 βˆ’πœŒ 1 πœ‡2 ))
𝜎2
2(1βˆ’πœŒ2 )𝜎1 2
This shows that
𝜎
(1) π‘ˆ = 𝑋 βˆ’ 𝜌 𝜎1 π‘Œ and 𝑉 = π‘Œ are independently distributed
2
(2) Y=V follows normal distribution with mean πœ‡2 and variance 𝜎2 2
𝜎
(3) The conditional distribution of π‘ˆ = 𝑋 βˆ’ 𝜌 𝜎1 π‘Œ given V= π‘Œ = 𝑦 is normal with mean πœ‡1 βˆ’
𝜎
𝜌 𝜎1 πœ‡2
2
2
and variance (1
βˆ’ 𝜌2 )𝜎1 2.
From (3) it follows that the conditional distribution of 𝑋 given π‘Œ = 𝑦 is normal with mean πœ‡1 +
𝜎
𝜌 1 (𝑦 βˆ’ πœ‡2 ) and variance (1 βˆ’ 𝜌2 )𝜎1 2 .
𝜎2
Distribution of 𝑿 + 𝒀
𝑋+π‘Œ =π‘ˆ+𝜌
𝜎1
𝜎1
𝑉 + 𝑉 = π‘ˆ + (1 + 𝜌 ) 𝑉
𝜎2
𝜎2
Since 𝑋 + π‘Œ is a linear combination of the independent normal random variables π‘ˆ and 𝑉, the
distribution of X+Y is normal with mean 𝐸(𝑋 + π‘Œ) = 𝐸(𝑋) + 𝐸(π‘Œ) = πœ‡1 + πœ‡2 and variance
𝜎
𝜎
2
𝜎
π‘‰π‘Žπ‘Ÿ(𝑋 + π‘Œ) = π‘‰π‘Žπ‘Ÿ (π‘ˆ + (1 + 𝜌 𝜎1 ) 𝑉) = π‘‰π‘Žπ‘Ÿ(π‘ˆ) + (1 + 𝜌 𝜎1 ) π‘‰π‘Žπ‘Ÿ(𝑉) + 2 (1 + 𝜌 𝜎1 ) πΆπ‘œπ‘£(π‘ˆ, 𝑉)
2
𝜎
2
= (1 βˆ’ 𝜌2 )𝜎1 2 + (1 + 𝜌 𝜎1 ) 𝜎2 2 = 𝜎1 2 + 𝜎2 2 + 2𝜌𝜎1 𝜎2.
2
2
2
Related documents