* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Gravitation, Potential Energy, Circular Orbits
Survey
Document related concepts
Transcript
PHYC 160 Start Gravitation — Ch 13 Lecture #32 Exam 3 results Newton’s law of gravitation • Law of gravitation: Every particle of matter attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. • The gravitational force can be expressed mathematically as = Gm1m2/r2, where G is the gravitational constant. Copyright © 2012 Pearson Education Inc. Fg Gravitational Force • The gravitational force is very weak (?)… • For two masses each of 1kg, separated by 1m: FG m1m2 G 2 r G 1kg 1kg 1m 2 6.6742 10 11 N • That is, the proportionately constant, G = 6.6742x10-11Nm2/kg2. • So why is it that we feel such a strong force on us? • The earth’s mass = 5.98x1024kg!! Q13.2 The planet Saturn has 100 times the mass of the Earth and is 10 times more distant from the Sun than the Earth is. Compared to the Earth’s acceleration as it orbits the Sun, the acceleration of Saturn as it orbits the Sun is A. 100 times greater. B. 10 times greater. C. the same. D. 1/10 as great. E. 1/100 as great. © 2012 Pearson Education, Inc. Gravitation and spherically symmetric bodies • The gravitational interaction of bodies having spherically symmetric mass distributions is the same as if all their mass were concentrated at their centers. (See Figure 13.2 at the right.) Copyright © 2012 Pearson Education Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 812 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81)2 = 1/6561 as great. © 2012 Pearson Education, Inc. Determining the value of G • In 1798 Henry Cavendish made the first measurement of the value of G. Figure 13.4 below illustrates his method. Copyright © 2012 Pearson Education Inc. Superposition of Force • Remember that if two (or more) forces are acting on a body, the net force is just the (vector) sum of all the forces: F1 FNet F2 = F3 • The same is true for gravitational forces. Example Some gravitational calculations • Example 13.1 shows how to calculate the gravitational force between two masses. • Example 13.2 shows the acceleration due to gravitational force. • Example 13.3 illustrates the superposition of forces, meaning that gravitational forces combine vectorially. (See Figure 13.5 below.) Copyright © 2012 Pearson Education Inc. Spherically Symmetric Bodies • We can do the same thing for continuous distributions of mass. FNet dF1 dF2 Spherically Symmetric Bodies • For a spherically symmetric distribution, the net force is pointed to the center, and has the magnitude as if all the mass was located at the center: m1m2 FG G FNet m1 r r 2 m2 Search For Oil • If the mass is not spherically symmetric, this is no longer the case: FNet m2 • This can be used to look for non-uniform densities in the earth’s crust (oil, uranium, etc.). Weight • The weight of a body is the total gravitational force exerted on it by all other bodies in the universe. • At the surface of the earth, we can neglect all other gravitational forces, so a body’s weight is w = GmEm/RE2. • The acceleration due to gravity at the earth’s surface is g = GmE/RE2. Copyright © 2012 Pearson Education Inc. Weight • The weight of a body decreases with its distance from the earth’s center, as shown in Figure 13.8 below. Copyright © 2012 Pearson Education Inc. Interior of the earth • The earth is approximately spherically symmetric, but it is not uniform throughout its volume, as shown in Figure 13.9 at the right. • Follow Example 13.4, which shows how to calculate the weight of a robotic lander on Mars. Copyright © 2012 Pearson Education Inc. Gravitational potential energy • Follow the derivation of gravitational potential energy using Figure 13.10 at the right. • The gravitational potential energy of a system consisting of a particle of mass m and the earth is U = –GmEm/r. Copyright © 2012 Pearson Education Inc. Gravitational potential energy depends on distance • The gravitational potential energy of the earth-astronaut system increases (becomes less negative) as the astronaut moves away from the earth, as shown in Figure 13.11 at the right. Copyright © 2012 Pearson Education Inc. Q13.4 Compared to the Earth, Planet X has twice the mass and twice the radius. This means that compared to the amount of energy required to move an object from the Earth’s surface to infinity, the amount of energy required to move that same object from Planet X’s surface to infinity is A. 4 times as much. B. twice as much. C. the same. D. 1/2 as much. E. 1/4 as much. © 2012 Pearson Education, Inc. From the earth to the moon • To escape from the earth, an object must have the escape speed. • Follow Example 13.5 using Figure 13.12 below. Copyright © 2012 Pearson Education Inc. Escape Velocity From Conservation of energy: The motion of satellites • The trajectory of a projectile fired from A toward B depends on its initial speed. If it is fired fast enough, it goes into a closed elliptical orbit (trajectories 3, 4, and 5 in Figure 13.14 below). Copyright © 2012 Pearson Education Inc. Q13.5 A satellite is moving around the Earth in a circular orbit. Over the course of an orbit, the Earth’s gravitational force A. does positive work on the satellite. B. does negative work on the satellite. C. does positive work on the satellite during part of the orbit and negative work on the satellite during the other part. D. does zero work on the satellite at all points in the orbit. © 2012 Pearson Education, Inc. Q13.6 A planet (P) is moving around the Sun (S) in an elliptical orbit. As the planet moves from aphelion to perihelion, the Sun’s gravitational force A. does positive work on the planet. B. does negative work on the planet. C. does positive work on the planet during part of the motion and negative work during the other part. D. does zero work on the planet at all points between aphelion and perihelion. © 2012 Pearson Education, Inc. Q13.7 A planet (P) is moving around the Sun (S) in an elliptical orbit. As the planet moves from aphelion to perihelion, the planet’s angular momentum A. increases during part of the motion and decreases during the rest of the motion. B. increases at all times. C. decreases at all times. D. remains the same at all times. © 2012 Pearson Education, Inc. Q13.8 Star X has twice the mass of the Sun. One of Star X’s planets has the same mass as the Earth and orbits Star X at the same distance at which the Earth orbits the Sun. The orbital speed of this planet of Star X is A. faster than the Earth’s orbital speed. B. the same as the Earth’s orbital speed. C. slower than the Earth’s orbital speed. D. not enough information given to decide © 2012 Pearson Education, Inc.