Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Keith Horne SUPA St Andrews Conformal Gravity in the X-ray Cluster Abell 2029 galaxies 108K gas monster galaxy Mannheim-Kazanas metric 4 W T 0 Source-free field equations: Static, spherical symmetry: 2 dr 2 2 2 2 2 2 ds b(r) dt r d sin d b(r) b(r) 1 3 2 3 r r r2 Analogous results including rotation and charge. Solar System Dynamics 2 dr 2 2 2 2 ds b(r) dt r d sin d b(r) 2 2 b(r) 1 3 2 3 r Schwarzschild metric: 1, r , 0, 2 2G M 2 b(r) 1 r 1 2 c r , r r2 Fixes one parameter GM 2 c Galaxy Rotation Curves b(r) (r) c2 g(r) c2 V 2 (r) 2 c 2(r) 1 2 c b(r) 1 2 1 d c 2 dr 2 2 1 r r r r g(r) r 2 r 2 r2 r r 2 2 r 2 r r 2 Linear potential gives a distanceindependent inward acceleration. Galaxy Rotation Curves Mannheim 1993, 1997. g(r) 2 r 2 c r ( fits two more mparameters) g0 2 m 1 x 2 m V0 m x x x 2 V (r) 2 r r 2 c r 2 2 M m M0 r x R0 GM 2 0 m 1 0 c 10 1 V0 100 km s R0 24 kpc M 0 5.6 10 M sun G M 0 V0 0 c 9 1 g0 1.4 10 m s 2 R0 2 R0 2 2 Universal inward acceleration. Exterior mass matters ! Newton No net force from external shells Hook’s law force toward centre of external shell GM g 2 r g0 Mannheim g 2x g 3 1 1 2 3x Rotation Curve Fits Fits adjust [M/L]* All mass in edge-on disk plane. linear potentia l stars gas NGC 1560 poorest fit. Data wiggles follow the gas. Abell 2029 Probes gravity on 10x larger scales 200 Kpc z 0.0767 cz d H0 320 Mpc Chandra X-ray Image of Abell 2029 The galaxy cluster Abell 2029 is composed of thousands of galaxies enveloped in a gigantic cloud of hot gas, and an amount of dark matter equivalent to more than a hundred trillion Suns. At the center of this cluster is an enormous, elliptically shaped galaxy that is thought to have been formed from the mergers of many smaller galaxies. X-ray Gas Spherical symmetry + Hydrostatic Equilibrium: dP G M( r) (r) g(r) (r) dr r2 (r) k T(r) observe : T(r), (r), P(r) mH Gravity and Total Mass profile: 1 dP(r) g(r) (r) dr r 2 dP(r) M( r) G (r) dr X-ray Gas 3-300 kpc Lewis, Stocke, Buote 2002. (r) T(r) cs(r) sgals P(r) v* sin(i) Newtonian Analysis Gravity and Total Mass profiles: g(r) ~ 3 10 8 cm s 2 g(r) 3 300 kpc r M( r) ~ 10 M sun 200 kpc r 13 M gas M stars ~ 10 M sun 200 kpc gas 2 14 90% Dark Matter Required ! star s M(<r) gas star s Conformal Gravity Gravity and Total g(r) Mass profiles: g(r) ~ 3 10 8 cm s 2 g(r) gas star s 3 300 kpc gas Dark Matter NOT required ! star s r 30 kpc gas M(<r) rstar 13 M gas M stars ~ 10 M sun s 200 kpc 12 M( r) ~ 10 M sun Too Much Conformal Gravity! M(<r) gas star s Newton vs Conformal Gravity g(r) g(r) gas star s gas star s M(<r) gas star s M(<r) gas star s Discussion Points :) Dark Matter is not needed to bind the X-ray Gas. :( • • • • Too much Conformal Gravity ! Conformal Gravity ruled out? (Not yet.) External material -- external Void ? Mannheim-Kazanas metric incomplete? Not in Higgs gauge --> vacuum polarisation. Quadratic potential terms important? External shells of distant galaxies should generate a universal quadratic potential. Gas not in hydrostatic equilibrium? Rotation/infall/outflow V > 1000 km/s? Doppler shift detectable in future X-ray spectroscopy. Stars generate the gravity -- not the hot gas? Same problem as in the colliding clusters 1E0657-56 ? Conformal Symmetry g (x) g 2 Clock ticks and rulers stretch by a factor that can vary in time and space. Invariants: angles, velocities, light cones, causality. IW d 4 x g C C 2 Weyl action: R 4 2 d x g R R g det g R R 3 RR Conformal Matter Action I d x g i (x) (x) i h S 4 M 1 R 2 4 S S S S 2 12 Equations of motion: IM 0 i (x) (x) h S 0 IM R 0 S ; S 4 S 3 h S 6 Higgs Fermion S S S mass: R(x) mmass: h S(x) 2 x mH 6 Dynamical Mass Generation IM 0 i (x) (x) h S 0 IM R 0 S ; S 4 S 3 h S 6 Higgs Higgs Fermion mass: potential: R(x) 2 V (S) mmass: h S(x) mH 6 R0 Symmetry Breaking Higgs potential: R 2 4 R0 V (S) S 4 S 6 Ricci scalar: (negative spatial R0 0 Vmin 0curvature). Field Equations IW IM 0 4 W T g 1 2 ; ; W g R ; R; ; R ; R ; ; R ; ; 6 3 2 2 1 R R R 2 R R g R R 3 2 3 T i (x) (x) 2 1 1 1 S S S S ; g S S ; S S 3 3 3 2 S 2 R R g S 4 g 6 2 Higgs Guage g 2 (x) g 1 S(x) (x) S(x) S0 m h S(x) h S0 Fermion mass: T T kin S0 R 4 R g S0 g 6 2 2 = matter + geometry + vacuum T i (x) (x) kin pUU p g matter fields => perfect fluid Conformal trajectories Mannheim 1993. Fermion mmass: h S(x) Test particle action. IM m d h S(x) d Trajectory for which action is stationary. dx x ( ) U d S dU U U g U U d S Conformal trajectories are the geodessic trajectories in the Higgs gauge. Trace Condition 4 W T W 0 T 0 U U 1 g D 4 2 S R 4 0 T pU U p g 0 R g S0 6 2 2D 2 4 (D 1) p S0 R D S0 12 1 2 4 0 3p S0 R 4 S0 Ricci scalar 6 0 = matter + geometry + vacuum in the 2 vacuum R 24 S0 MK metric -> Higgs guage Ricci scalar: R 6 2 2 r r g 2 g R 24 S0 2 1 S S S0 1 2 1 2 4 2 S S S R S S S R 4 S0 6 6 4 2 S S S 2 2 2 4 S0 r r Mannheim-Kazanas metric is not in Higgs guage. Test particles will not follow MK geodessics. Thanks for Listening !