Download Horne

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Keith Horne SUPA St
Andrews
Conformal Gravity
in the X-ray Cluster
Abell 2029
galaxies
108K gas
monster
galaxy
Mannheim-Kazanas metric
4  W   T  0
Source-free field
equations:
Static, spherical
symmetry:
2
dr
2
2
2
2
2
2

ds  b(r) dt 
 r d  sin  d 
b(r)
b(r)  1 3   


 2  3   
r
  r   r2
Analogous results including rotation and
charge.


Solar System Dynamics
2
dr
2
2
2
2
ds  b(r) dt 
 r d  sin  d 
b(r)
2
2
b(r)  1 3   
 2  3   
r
Schwarzschild metric:

  1, r  ,   0,

2
2G M
2
b(r)  1
r
 1
2
c r
,
  r   r2
Fixes one
parameter
GM
 2
c

Galaxy Rotation Curves
b(r)
(r)
c2
g(r)
c2
V 2 (r)
2
c
2(r)
 1
2
c
b(r) 1

2
1 d

c 2 dr
2
2
 1
  r  r
r
 r g(r)


 


r



2
r

2
r2
  r
r
2
2

r


2
r r
2
Linear potential gives a distanceindependent inward acceleration.
Galaxy Rotation Curves
Mannheim 1993,
1997.
g(r)
 
 2   r
2
c
r
( fits two more
mparameters)

 g0  2  m  1
x


2 m
 V0   m x  x 
 x

2
V (r)
 
2

 r r
2
c
r 2
2
M
m
M0
r
x
R0
GM
 2
  0  m  1
 0
c
 10
1
V0  100 km s
R0  24 kpc M 0  5.6 10 M sun
G M 0 V0
0 c
9
1
g0 



1.4
10
m
s
2
R0
2
R0
2
2
Universal inward acceleration.
Exterior mass matters !
Newton
No net
force
from
external
shells
Hook’s 
law
force toward
centre of
external
shell

GM
g 2
r
g0

Mannheim
g 2x

g
3
1
1 2
3x
Rotation Curve Fits
Fits adjust [M/L]* All mass in edge-on disk plane.
linear
potentia
l
stars
gas
NGC 1560
poorest fit.
Data wiggles
follow the
gas.
Abell 2029
Probes gravity on 10x larger scales
200
Kpc
z  0.0767
cz
d
H0
 320 Mpc
Chandra X-ray Image of Abell 2029

The galaxy cluster Abell 2029 is composed of thousands of galaxies enveloped in a
gigantic cloud of hot gas, and an amount of dark matter equivalent to more than
a hundred trillion Suns. At the center of this cluster is an enormous, elliptically
shaped galaxy that is thought to have been formed from the mergers of many
smaller galaxies.
X-ray Gas
Spherical symmetry +
Hydrostatic Equilibrium:
dP
G M( r)
  (r) g(r)    (r)
dr
r2
(r) k T(r)
observe : T(r),  (r),
P(r) 
 mH
Gravity and Total Mass profile:
1 dP(r)
g(r) 
(r) dr
r
2
dP(r)
M( r) 
G (r) dr
X-ray Gas 3-300 kpc
Lewis, Stocke, Buote 2002.
(r)
T(r)
cs(r)
sgals
P(r)
v* sin(i)
Newtonian Analysis
Gravity and Total
Mass profiles:
g(r) ~ 3 10 8 cm s 2
g(r)
3  300 kpc
 r 
M( r) ~ 10 M sun 

200 kpc 
 r 
13
M gas  M stars ~ 10 M sun 

200 kpc 
gas
2
14
90% Dark
Matter
Required !
star
s
M(<r)
gas
star
s
Conformal Gravity
Gravity and Total
g(r)
Mass profiles:
g(r) ~ 3 10 8 cm s 2
g(r)
gas
star
s
3  300 kpc
gas
Dark Matter NOT
required !
star
s
r  30 kpc
gas
M(<r)

rstar 
13
M gas  M stars ~ 10 M sun 

s

200 kpc
12
M( r) ~ 10 M sun
Too Much Conformal
Gravity!
M(<r)
gas
star
s
Newton vs Conformal Gravity
g(r)
g(r)
gas
star
s
gas
star
s
M(<r)
gas
star
s
M(<r)
gas
star
s
Discussion Points
:)
Dark Matter is not needed
to bind the X-ray Gas.
:(
•
•
•
•
Too much Conformal Gravity !
Conformal Gravity ruled out? (Not yet.)
External material -- external Void ?
Mannheim-Kazanas metric incomplete?
Not in Higgs gauge --> vacuum polarisation.
Quadratic potential terms important?
External shells of distant galaxies should generate
a universal quadratic potential.
Gas not in hydrostatic equilibrium?
Rotation/infall/outflow V > 1000 km/s?
Doppler shift detectable in future X-ray spectroscopy.
Stars generate the gravity -- not the hot gas?
Same problem as in the colliding clusters 1E0657-56 ?
Conformal Symmetry
g   (x) g
2
Clock ticks and rulers stretch by a
factor that can vary in time and space.

Invariants: angles, velocities, light cones,
causality.
IW    d 4 x g C C 
2 
Weyl action:

R
4

 2   d x g R R  

g  det g  R  R


3 

RR

Conformal Matter Action
I    d x g i   (x)    (x) i h S 
4
M



1 
R 2
4 
 S S  S   S 

2
12
Equations of motion:
 IM

 0  i  (x)     (x) h S  0

 IM
R

 0  S ;  S  4  S 3  h 
S
6
Higgs
Fermion
S
S   S  
mass:
R(x)
mmass:
 h S(x)
2
x
mH  
6
Dynamical Mass Generation
 IM
 0  i   (x)     (x) h S  0

 IM
R

 0  S ;  S  4  S 3  h 
S
6
Higgs
Higgs
Fermion
mass:
potential:
R(x)
2
V
(S)
mmass:
 h S(x)
mH  
6
R0
Symmetry Breaking Higgs
potential:
R 2
4
R0
V (S)  S  4  S 
6


Ricci scalar:
(negative spatial
R0

  0 Vmin  0curvature).
Field Equations
 IW  IM 
 0  4  W   T
 g
1
2
;


;
W    g R ;  R; ;  R ;  R ; ;  R ; ;
6
3
2 

2
1
R
  R R  2 R  R  g R R  





3
2 
3 
T  i   (x)    (x)
 
2
1
1
1  
 S S  S S ;  g S S ;  S S 

3
3
3 
2

S 2 
R
 R  g   S 4 g

6 
2
Higgs Guage
g  2 (x) g
1
S(x)   (x) S(x)  S0
m  h S(x)  h S0
Fermion

mass:

T
 T
kin


S0 
R
4

R  g   S0 g

6 
2
2
= matter + geometry + vacuum
T  i   (x)    (x)
kin

  pUU  p g
matter fields => perfect fluid
Conformal trajectories
Mannheim 1993.
Fermion
mmass:
 h S(x)
Test particle action.
IM  m  d  h  S(x) d
Trajectory for which action is stationary.

dx


x ( )
U 

d

S  
dU



  U U   g  U  U  
d
S
Conformal trajectories are the geodessic
trajectories in the Higgs gauge.
Trace Condition
4  W   T
W   0  T   0
U U  1
g     D  4
2
S
R  
4

 0  T      pU U  p g   0 
R   g    S0


6 
2

2D 2
4
   (D 1) p 
S0 R  D  S0
12
1 2
4
0  3p    S0 R  4  S0
Ricci scalar
6
0 = matter + geometry + vacuum
in the
2
vacuum
R  24  S0
MK metric -> Higgs guage
Ricci scalar:
  

R  6  2  2 
r r

g  2 g
R  24  S0
2
1
S  
S S0
1 2
1 2 
4

2  
S S  S R   S S  S R 4  S0


6
6

 
4 2
 S  S  S 2 
  2  2  4  S0 

r r

Mannheim-Kazanas metric is not in Higgs guage.
Test particles will not follow MK geodessics.
Thanks for Listening !
Related documents