Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The role of gauge invariance in the theory of superconductivity* Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching g Outline • Electrodynamics • • • • Quantum mechanics London‘s theory Nambu‐BCS theory (w/o Greens functions!) Summary and conclusion * Nobel Lecture 2008, Y. Nambu, Rev. Mod. Phys. 81, 1015 – 1018 (2009) Seminar on Advances in Solid State Physics, WMI, June 8, 2010 1 Two fundamental theorems Noether theorem: Goldstone theorem: (Emmy Noether, 1918) (Jeffrey Goldstone, 1961) „Every continuous symmetry of a system is to be associated with a conserved quantity“ „The spontaneous breaking of a continuous symmetry is to be associated with a massless and spinless particle, the socalled ll d Nambu-Goldstone N b G ld t b boson“ “ symmetry t operation ti conservation ti law l translation in time energy translation in space momentum b k symmetry broken t G ld t Goldstone b boson liquids Galilean g phonon p longitudinal longit.+transv. phonon magnon phonon rotation in space angular momentum solids Galilean spin rotation phase charge gauge 2 Electrodynamics: potentials and fields scalar potential t potential t ti l vector magnetic field electric field gauge invariance 3 Quantum mechanics: gauge invariance Consider a non-relativistic (Bose-) particle of charge q=ke and mass m=km0 Quantum-mechanical description: wave function C Copenhagen h i t interpretation: t ti probability b bilit density d it Schrödinger equation in the presence of Gauge transformation and , fluxoid quantum/2π corresponds to local U(1) trafo: with 4 London‘s* theory in a nutshell Macroscopic (pseudo-) bosonic condensate wave function i. e. p postulate of macroscopic p p phase coherence associated with a macroscopic number of (i) bosons (k = 1, Bose condensate) (ii) fermion pairs (k = 2, pair condensate) superfluid density Schrödinger equation conservation law continuity Josephson gauge-invariant current density * F & H London,1935, 1950 5 Nambu-BCS* theory: route to superconductivity energy variable particles holes (i) pair attraction (exchange boson) ((ii)) pair p formation in k-space (iii) broken gauge [U(1)] symmetry * Bardeen, Cooper & Schrieffer, 1957 6 Nambu-BCS theory: particle-hole structure (i ) pair (iv) i potential t ti l (v) energy becomes a matrix in particle-hole (Nambu) space for T<Tc Yoishiro Nambu, 1962 particles mixture diagonalization 0 Bogoliubov, Valatin, 1957 mixture holes off-diagonal long range order (ODLRO) 7 Nambu-BCS theory: thermal excitations (vi) gap formation: energy dispersion of the thermal excitations (Bogoliubov(Bogoliubov Valatin quasiparticles, „bogolons“) Ek b bogolons l Δk 0 0 kF k 8 Nambu-BCS theory: thermal excitations Thermal excitations: Bogoliubov-Valatin quasiparticles momentum distribution isotropic nodal Fermi surface Bogoliubov q quasiparticles p 9 Momentum distribution in Nambu space particles pairing Nambu matrix pairing holes BCS coherence factors diagonal density particles holes off-diagonal g densityy Gorkov pairing amplitude 10 Momentum distribution functions revisited Which of these two functions is relevant for superconductivity Fermi-Dirac ? thermal excitations 11 Nonequilibrium description: electromagnetic response scalar potential vector potential external perturbation potentials nonequilibrium phase space distribution linear response 12 Nonequilibrium description: normal state density fluctuations: particle-hole excitations, local equilibrium vertex (e,, evk) „minimal coupling“ 13 A Nambu space, discovered at a German University N b matrices: Nambu ti generall structure t t Nambu space Entrance for particles |k,σ> holes |-k,-σ> only 14 Nonequilibrium description: Nambu structure electromagnetic potentials in Nambu space diagonalization shifted quasiparticle energy shifted momentum distribution ! 15 Nonequilibrium description: Nambu structure integral properties Yosida function Nambu-BCS current density superfluid density tensor 16 Nonequilibrium description: Yosida function BCS Yo B osida ffunctio on 1 Y(T) l low t temperature t regime GL regime 0 0.1 T/Tc 1 17 Nonequilibrium description: supercurrent density violation of the number conservation law gauge transformation gauge-invariant current density 18 Nonequilibrium description: supercurrent density how to restore the number conservation law gauge-invariant (strictly tansverse) current density „backflow term“ from gauge mode 19 Nonequilibrium description: electromagnetic response quantum q ant m dynamics: d namics von Neumann equation linearization, collisionless limit Ik = 0 streaming in phase space Fourier space external and molecular forces Betbeder-Matibet & Nozieres, 1969; Wölfle, 1976; Einzel & Klam, 2006 20 Nonequilibrium description: integral equations diagonal g energy gy Consequences: Coulomb-I. Fermi liquid-I. : external perturbations cause electromagnetic response : dielectric screening, screening plasma oscillations : collective density (sound) oscillations off-diagonal energy Consequences: pairing-I. : order parameter collective modes (amplitude, phase), gauge-invariance 21 Nonequilibrium description: dynamics of the gap amplitude phase off-diagonal g energy gy decomposition p order p parameter p phase fluctuations Gauge mode, Anderson-Bogoliubov mode, Nambu-Goldstone mode order d parameter t amplitude lit d fluctuations 2Δ mode, coupling O(pha) 22 Nonequilibrium description: the gauge mode solution for δΔk: generali d Josephson lized J h relation l ti gauge mode gauge mode frequency sound d velocity l it 23 Nonequilibrium description: condensate response The Tsuneto function: complicated expression long wavelength g limit condensate densityy response stationary limit condensate current response 24 Nonequilibrium description: solution for δnk solution for δnk macroscopic particle density density conservation/relaxation macroscopic current density 25 Nonequilibrium description: continuity equation condensate terms on r.h.s. revisited gauge mode gauge-invariance charge/particle number conservation law 26 Nonequilibrium description: density & current density response long wavelength limit Josephson no homogeneous density response! stationary current response „backflow backflow“ stationary current purely transverse! 27 Summary and conclusion Gauge invariance in the theory of superconductivity London‘s theory (Madelung version): postulate of phase-coherent macroscopic wave function ψ gauge-invariant formulation possible Local equilibrium BCS response theory: spontaneously t l broken b k gauge U(1) symmetry t Nambu space description correct microscopic form of superfluid density tensor ns lacks g gauge g invariance and therefore p particle number conservation Nonequilibrium BCS response theory: order parameter phase fluctuations: gauge mode generall condensate d t response (Tsuneto) (T t ) function f ti determines χs, ns, dynamic conductivity, Raman response, … occurrence of „backflow“ terms in current response, Raman response, etc. gauge invariance and hence particle number conservation can be restored gauge mode frequency [vF2/3]1/2 unaffected by unconventionality of pairing gauge mode frequencies different from [vF2/3]1/2 in non-centrosymmetric superconductors 28 Appendix: quantum mechanics, Madelung description quantum mechanical wave function (Erwin Madelung, Madelung 1926) probability density conservation law for np probability current density (gauge invariant !) (gauge-invariant Hamilton-Jacobi (Josephson) equation Euler equation for dissipationless „Madelung fluid“ A1 Appendix: Comments on the Madelung description Schrödinger equations for Ψ and Ψ∗ equivalent to ( i) probability density conservation law (magnitude of Ψ) (ii) Hamilton Jacobi-equation (phase of Ψ) in the quasiclassical limit Identification of gauge-invariant probability current density Acceleration equation for vp: Euler equation for the Madelung (probability) fluid A2 Appendix: London* theory in a nutshell Reinterpretation of as macroscopic (pseudo-) bosonic condensate wave function, postulate of macroscopic phase coherence associated with a macroscopic number of (i) bosons (k = 1, Bose condensate) (ii) fermion pairs (k = 2, 2 pair condensate) Reinterpretation of as the macroscopic condensate density Reinterpretation of as the supercurrent or condensate current density Reinterpretation of as the superfluid condensate velocity p of Replacement * F & H London,1935, 1950 byy the electrochemical p potential A3 Appendix: basic results of the London theory condensate d t currentt persistent currents Screening and magnetic field penetration depth Fluxoid Fl id quantization ti ti („2e or not 2e“) A4 Appendix: The London functional London energy density: gradients, fields, magnetodynamics Madelung transformation ( ) (MT) WKB London penetration depth gaugeinvariant! A5 Appendix: The Ginzburg-Landau functional Ginzburg-Landau energy density gradients, fields, magnetodynamics thermodynamics Madelung transformation SC p phase transition: condensation of superfluid density a2 A6 Appendix: The Higgs mechanism in particle physics Klein-Gordon equation: relativistic spinless Bose particles London functional (gauge-invariant) μ2 Ginzurg-Landau functional mass condensation (Higgs mechanism) A7 Appendix: classification of pair potentials Condensate: p pair p potential ((total spin p s) node structure Conventional: singlet (s=0) triplet (s=1) Unconventional: fp(s) shares lattice symmetry broken gauge symmetry ( ) breaks lattice fp(s) symmetry additional broken symmetries ti A8 Appendix: unconventional pairing Organic SC‘s (1980) Heavy-fermion y SC‘s (1979) Superfluid 3He (1971) Cuprate- (high-Tc) SC‘s (1986) Ruddlesden-Popper SC‘s Sr2RuO4 (1994) NCS superconductors* (2004) * D.E. + Klam/Manske: PRL 102, 027004 (2009) Book on NCS superconductors, (M. Sigrist, Ed., Springer, Heidelberg), Chapter: Kinetic Theory of NCS Superconductors A9 Appendix: isotropic vs. nodal gaps Examples for fk(s) conv. BCS, 3He-B ((pseudo-)) isotropic 3He-A, UBe13: axial UPt3: E1g UPt3: E2u cuprates: B1g A10 Appendix: statistics of Bogoliubov quasiparticles energy dispersion of energy dispersion of Bogoliubov quasiparticles 1 n(ξξp) n(|ξp|) Momentum distribution of Bogoliubov quasiparticles Δ/kBT T = 0 =0 1 ν(Εp) 2 3 0 ‐4 0 ξp/kBT A11 Appendix: BCS quasiparticle response functions Yosida kernel normal fluid density Yosida function spin susceptibility specific heat A12 Appendix: BCS quasiparticle response functions vertex quantity vertex normal fluid density spin susceptibility entropy specific p heat Generalized Yosida functions A13 Appendix: BCS theory and temperature dependencies Δ2(T)/Δ2(0) 1 1 energy gap 0 0.1 1 T/Tc 1 Y(T) ( ) 0 0.1 2.5 normal fluid density, spin susc spin susc. σ(T)/σN(T) entropy T/Tc 1 )/ N((T)) CV((T)/C specific heat 1 0 0.1 T/Tc 1 0 0.1 T/Tc 1 A14 Appendix: BCS theory: magnetic penetration depth 1 4λL(0) 1.4λ d-wave λL(T) 1.2λL(0) λL(0) s-wave 0 T/T T/Tc 08 0.8 A15 Appendix: density & current revisited homogeneous density response no homogeneous density response! stationary current response stationary current purely transverse! A16 Appendix: r.h.s of continuity equation particle number conservation and gauge invariance condensate response kernel: Tsuneto function A17 Appendix: condensate response generalized condensate density stationary i it imit long wavelength l th limit generalized Yosida functions „condensate“ density „superfluid“ density A18