Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name ________________________________________ Date __________________ Class__________________ LESSON 8-3 Reteach Solving Right Triangles Use the trigonometric ratio sin A = 0.8 to determine which angle of the triangle is ∠A. sin ∠1 = = leg opposite ∠1 hypotenuse sin ∠2 = 6 10 = = 0.6 leg opposite ∠2 hypotenuse 8 10 = 0.8 Since sin A = sin ∠2, ∠2 is ∠A. If you know the sine, cosine, or tangent of an acute angle measure, then you can use your calculator to find the measure of the angle. Inverse Trigonometric Functions Symbols Examples sin 30° = sin A = x ⇒ sin−1 x = m∠A cos 45° = cos B = x ⇒ cos−1 x = m∠B tan C = x ⇒ tan−1 x = m∠C 1 ⎛ 1⎞ ⇒ sin−1 ⎜ ⎟ = 30° 2 ⎝2⎠ ⎛ 2⎞ 2 ⇒ cos−1 ⎜ = 45° ⎜ 2 ⎟⎟ 2 ⎝ ⎠ tan 76° ≈ 4.01 ⇒ tan−1 (4.01) ≈ 76° Use the given trigonometric ratio to determine which angle of the triangle is ∠A. 1. sin A = 1 2 2. cos A = _________________________________________ 3. cos A = 0.5 ________________________________________ 4. tan A = _________________________________________ 13 15 15 26 ________________________________________ Use your calculator to find each angle measure to the nearest degree. 5. sin−1 (0.8) 6. cos−1 (0.19) _________________________________________ 7. tan−1 (3.4) _________________________________________ ________________________________________ ⎛ 1⎞ 8. sin−1 ⎜ ⎟ ⎝5⎠ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 8-22 Holt McDougal Geometry Name ________________________________________ Date __________________ Class__________________ LESSON 8-3 Reteach Solving Right Triangles continued To solve a triangle means to find the measures of all the angles and all the sides of the triangle. Find the unknown measures of UJKL. Step 1: Find the missing side lengths. sin 38° = ← leg opposite ∠K ← hypotenuse JL 22 13.54 mm ≈ JL JL2 + LK 2 = JK 2 2 13.542 + LK = 22 2 LK ≈ 17.34 mm Pythagorean Theorem Substitute the known values. Simplify. Step 2: Find the missing angle measures. m∠J = 90° − 38° = 52° Acute ∠s of a rt. U are complementary. Simplify. So JL ≈ 13.54 mm, LK ≈ 17.34 mm, and m∠J = 52°. Find the unknown measures. Round lengths to the nearest hundredth and angle measures to the nearest degree. 9. 10. _________________________________________ ________________________________________ _________________________________________ ________________________________________ 11. 12. _________________________________________ ________________________________________ _________________________________________ ________________________________________ For each triangle, find the side lengths to the nearest hundredth and the angle measures to the nearest degree. 14. J(2, 3), K(−1, −4), L(−1, 3) 13. M(−5, 1), N(1, 1), P(−5, 7) _________________________________________ ________________________________________ _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 8-23 Holt McDougal Geometry Measure of ∠T Length US Possible answer: 63° Possible Possible Possible answer: answer: answer: 1.96 3 15 1 1 4 16 inches inches Tan T Length TS 17. 13.99 ft Sec T 11.33 ft Possible answer: 2.20 39° 18. 8 km 62° 28° 6. Possible answer: 19. The length of US is close in value to tan T, and the length of TS is close in value to sec T. Problem Solving 1. 4.80 ft 2. 9.49 cm 3. 61.4 cm 5. C 7. A 4. 19 in2 6. G 8. F 20. ∠Y Practice B Reading Strategies 1. Answers will vary. 2. Both ratios have Hypotenuse in the denominator. 3. hypotenuse 10 ; 0.38 4. a. 26 24 b. ; 0.92 26 10 ; 0.42 c. 24 2. ∠1 3. ∠2 4. ∠2 5. ∠2 6. ∠1 7. 55° 8. 24° 9. 79° 10. 22° 11. 77° 12. 6° 14. EF = 2.73 m; m∠D = 65°; m∠F = 25° 15. GH = 7.64 ft; GI = 7.91; m∠I = 44° 16. KL = 2.71 yd; JK = 2.84 yd; m∠K = 17° 17. QP = 11.18 cm; m∠Q = 42°; m∠R = 48° 18. ST = 3.58 yd; m∠S = 12°; m∠T = 78° Practice A −1 1. ∠1 13. AB = 7.74 in.; m∠A = 57°; m∠B = 33° 8-3 SOLVING RIGHT TRIANGLES 1. m∠A 21. 3; 5; 5.83 19. BC = 8.60; BD = 7; CD = 5; m∠B = 36°; m∠C = 54°; m∠D = 90° 2. x 3. tan x 4. ∠2 5. ∠1 6. ∠1 7. ∠1 8. ∠2 9. ∠2 10. 19° 11. 62° 12. 50° 13. 64° 14. 78° 20. LM = 2; LN = 7; MN = 7.28; m∠L = 90°; m∠M = 74°; m∠N = 16° 21. XY = 1; XZ = 1.41; YZ = 1; m∠X = 45°; m∠Y = 90°; m∠Z = 45° Practice C 1. 37°; 53° 2. 23°; 67° 15. 70° 3. 28°; 62° 4. 16°; 74° 16. 3 yd 5. Yes, a 20% grade in the United States is equal to a 20% grade elsewhere. Possible answer: A 20% grade in the 37° 53° Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A13 Holt McDougal Geometry United States means a rise in elevation of 20 feet over 100 horizontal feet. A 20% grade elsewhere means a rise in elevation of 20 meters over 100 meters. 20 ft 20 m But a grade is a ratio: = . 100 ft 100 m The units cancel out, and either way a 1 20% grade simplifies to , or an angle 5 with the horizontal that measures about 11°. 6. EG = 0.61 m; FG = 0.54 m; m∠E = 57° 7. KM = 56.13 mm; m∠K = 61°; m∠L = 34° 6. cos R = 2 ; tan R = 1; m∠R = 45° 2 7. sin K = 3 1 ; cos K = ; m∠K = 60° 2 2 Problem Solving 1. 16° 2. 22° to 27° 3. 64° 4. 34.9 ft 5. A 6. G 7. D 8. F Reading Strategies 10. IJ = 5.32 yd; m∠H = 90°; m∠I = 62° 1. finding the measures of all unknown sides and angles of the triangle ⎛9⎞ 2. m∠B = tan−1 ⎜⎝ 4 ⎟⎠ 11. RS = 18.98 mm; ST = 20.07 mm; m∠R = 60° 3. sin 24° = 8. BC = 3.74 ft; m∠B = 83°; m∠D = 48° 9. TV = 8.43 in.; UV = 14.08 in.; m∠T = 79° Reteach 1. ∠2 2. ∠2 3. ∠1 4. ∠2 5. 53° 6. 79° 7. 74° 8. 12° Practice A 1. horizontal; above 2. depression; below 3. angle of depression 11. QR ≈ 20.76 km; QS ≈ 25.04 km; m∠Q = 34° 4. angle of elevation 5. angle of depression 12. WX ≈ 18.30 cm; m∠X ≈ 59°; m∠Y ≈ 31° 6. angle of elevation 13. MP = MN = 6; PN ≈ 8.49; m∠M = 90°; m∠P = 45°; m∠N = 45° 7. 28 feet 9. 11.9 meters 8. 35 feet 10. 1.9 meters Practice B 1. angle of elevation Challenge 3 5 4. 67°; 23°; 12 DEPRESSION 10. FH ≈ 9.12 mi; m∠F ≈ 26°; m∠H ≈ 64° 1. AB 8-4 ANGLES OF ELEVATION AND 9. AB ≈ 12.52 ft; AC ≈ 7.54 ft; m∠B = 37° 14. KL = 7; LJ = 3; JK ≈ 7.62; m∠L = 90°; m∠J ≈ 67°; m∠K ≈ 23° 4 2. 2. angle of depression 4 3 3. angle of depression 3. 53.1° 5 2 5 4. sin E = ; cos E = ; m∠E ≈ 26.6° 5 5 1 3 5. sin M = ; tan M = ; m∠M = 30° 2 3 4. angle of elevation 5. 34 ft 2 in. 6. 37 ft 1 in. 7. 31 ft 10 in. 8. 1.8 m 9. 65° 10. Mr. Shea lives above Lindsey. Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A14 Holt McDougal Geometry