Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
• INTRODUCTION • OPERATIONS OF COMPLEX NUMBER • THE COMPLEX PLANE • THE MODULUS & ARGUMENT • THE POLAR FORM RATIONAL NUMBERS (Q) COMPLEX NUMBERS (C) REAL NUMBERS (R) IRRATIONAL NUMBERS (Q) INTEGERS (Z) WHOLE NUMBERS (W) NATURAL NUMBERS (N) To solve algebraic equations that do not have real solutions. x2 4 0 x 2 Real solution x2 4 0 x 4 To solve Complex number: x 4 2i Since, i 2 1 i 1 No real solution Example 1 : Solve a) i b) i 5 8 Example : Solution a ) i (i ) i (1) i i 5 2 2 2 b) i (i ) (1) 1 8 2 4 2 Definition 1.1 If z is a complex number, then the standard equation of Complex number denoted by: z a bi where a, b R a – Real part of z (Re z) b – Imaginary part of z (Im z) Example 1.2 : Express in the standard form, z: a) 2 4 b) 3 49 Example 1.2 : Solution: a ) z 2 4 z 2 2i Re(z) = 2, Im (z) = -2 b) z 3 40 z 3 2 10i Re(z) = 3, Im (z) = 2√10 Definition 1.2 2 complex numbers are said equal if and only if they have the same real and imaginary parts: a bi c di Iff a = c and b = d Example 1.3 : Find x and y if z1 = z2: a ) 2 x 3 yi 4 9i b) x 5 yi 10 20i Definition 1.3 If z1 = a + bi and z2 = c + di, then: i ) z1 z 2 (a c) (b d )i ii ) z1 z 2 (a c) (b d )i iii ) z1 z 2 (ac bd ) (ad bc)i Example 1.4 : Given z1 = 2+4i and z2= 1-2i a ) z1 z 2 b) z1 z 2 c) z1 z 2 Definition 1.4 The conjugate of z = a + bi can be defined as: z a bi a bi ***the conjugate of a complex number changes the sign of the imaginary part only!!! Example 1.5 : Find the conjugate of a) b) c) d) z 2i z 3 2i z 10 z 10i The Properties of Conjugate Complex Numbers i) z z ii ) z1 z 2 z1 z 2 iii ) z1 z 2 z1 z 2 iv) z1. z 2 z1.z 2 1 1 v) z z n vi) z z ; n n zz vii ) Re( z ) 2 zz viii ) Im( z ) 2 Definition 1.5 (Division of Complex Numbers) If z1 = a + bi and z2 = c + di then: z1 a bi z 2 c di a bi c di c di c di (ac bd ) bc ad i 2 2 c d Multiply with the conjugate of denominator Example 1.6 : Simplify and write in standard form, z: 2i a) 1 i 3 4i b) 1 3i The complex number z = a + bi is plotted as a point with coordinates (a,b). Re (z) Im (z) x – axis y – axis Im(z) b O(0,0) z(a,b) a Re(z) Definition 1.6 (Modulus of Complex Numbers) The modulus of z is defined by r z a b 2 2 Im(z) z(a,b) b r O(0,0) a Re(z) Example 1.7 : Find the modulus of z: a) z 2 i b) z 3 5i The Properties of Modulus i) z z ii ) z z z 2 iii ) z1 z 2 z1 z 2 z1 z1 iv) , z2 0 z2 z2 v) z z n n vi) z1 z 2 z1 z 2 Definition 1.7 (Argument of Complex Numbers) The argument of the complex number z = a + bi is defined as b tan a 1 2nd QUADRANT 1st QUADRANT 90 180 0 90 180 270 270 360 3rd QUADRANT 4th QUADRANT Example 1.8 : Find the arguments of z: a) b) c) d) z 2i z 3 5i z 1 i z 2i Im(z) (a,b) r b Re(z) a Based on figure above: a r cos b r sin b tan a 1 The polar form is defined by: z r cos i sin @ z r , Example 1.9: Represent the following complex number in polar form: a) z 2 i b) z 3 5i c) z 2i Answer 1.9 : Polar form of z: a ) z 5 cos 333.43 i sin 333.43 b) z 34 cos120.96 i sin 120.96 c) z 2cos 90 i sin 90 Example 1.10 : Express the following in standard form of complex number: a ) z 2(cos 45 i sin 45) b) z 3(cos180 i sin 180) c) z 2 cos 270 i sin 270 Answer 1.10 : Standard form: a ) z 2 2i b) z 3 c) z 2i Theorem 1: If z1 and z2 are 2 complex numbers in polar form where then, z1 r1 cos 1 i sin 1 z 2 r2 cos 2 i sin 2 i ) z1 z 2 r1r2 cos1 2 i sin 1 2 ii ) z1 r1 cos1 2 i sin 1 2 z 2 r2 Example 1.11 : a) If z1 = 4(cos30+isin30) and z2 = 2(cos90+isin90) . Find : i ) z1 z 2 ii ) z1 z2 b) If z1 = cos45+isin45 and z2 = 3(cos135+isin135) . Find : i ) z1 z 2 ii ) z1 z2 Answer 1.11 : a) i ) z1z 2 4 4 3i z1 ii ) 1 3i z2 b) i ) z1z 2 3 z1 1 ii ) i z2 3 Think of Adam and Eve like an imaginary number, like the square root of minus one: you can never see any concrete proof that it exists, but if you include it in your equations, you can calculate all manner of things that couldn't be imagined without it. Philip Pullman In The Golden Compass (1995, 2001), 372-373.