Download Euclidean 4dimensional electromagnetism

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Euclidean 4dimensional electromagnetism
Whit Time (zero point) energy
Euclidean 4dimensional electromagnetism are together whit
electrogravitation and hyperspace theory a unified field theory
that hopefully can describe most things. It is this theory that you
use when you are constructing time (zero point) energy
converters (antilenz-generators).
According to euclidean relativity everything is moving at
lightspeed in the 4space according to the equation
vx2+vy2+vz2+vt2=c2 where vx=dx/dT is the x-component of the
velocity , vy=dy/dT is the y-component of the velocity , vz=dz/dT
is the z-component of the velocity and vt=cdt/dT=√(c2-v2) is the
time velocity ,c is the lightspeed ,t is coordinate time and T own
time. Charge and current density equations becomes
jx2+jy2+jz2+(ρ0vt)2=(ρ0c)2 where jx=(d2I)/(dydz) is the xcomponent of the current density , jy=(d2I)/(dxdz) is the ycomponent of the current density , jz=(d2I)/(dydx) is the zcomponent of the current density and ρ0=(d3Q)/(dxdydz) is the
charge density where Q is the charge and I=dQ/dT is the current
Qv=Il where l is the length of the conductor
Jx=ρ0vx Jy=ρ0vy Jz=ρ0vz
The magnetical fields and the electrostatical field/c becomes
following
Bxy=μ0∫jxdy
Bxz=μ0∫jxdz
Bxct=μ0∫jxcdt
Byx=μ0∫jydx
Byz=μ0∫jydz
Byct=μ0∫jycdt
Bzx=μ0∫jzdx
Bzy=μ0∫jzdy
Bzct=μ0∫jzcdt
Esx/c=μ0∫(ρ0vt)dx
Esy/c=μ0∫(ρ0vt)dy
Esz/c=μ0∫(ρ0vt)dz
Where Bxy is the magnetic field from currents flowing in xdirection in the y-direction , Bxz is the magnetic field from currents
flowing in x-direction in the z-direction , Byx is the magnetic field
from currents flowing in y-direction in the x-direction , Byz is the
magnetic field from currents flowing in y-direction in the zdirection , Bzx is the magnetic field from currents flowing in zdirection in the x-direction , Bzy is the magnetic field from currents
flowing in z-direction in the y-direction.
Please observe that I am using straight field lines from the
conductors instead of using concentretic rings, if you want to use
concentretic rings you have to think that they are perpendicular
against both the current and my straight field lines.
Bxct is the magnetic field from currents flowing in x-direction in
the time dimension , Byct is the magnetic field from currents
flowing in y-direction in the time dimension , Bzct is the magnetic
field from currents flowing in z-direktion in the time dimension ,
Esx/c is the electrostatic field/c in the x-direction , Esy/c is the
electrostatic field/c in the y-direction , Esz/c is the electrostatic
field/c in the z-direction
Φxy=∬ Bxydxdy
Φxz=∬ Bxydxdz
Φyx=∬ Bxydydx
Φyz=∬ Bxydydz
Φzx=∬ Bxydzdx
Φzy=∬ Bxydzdy
Where Φxy is the magnetic flux from currents flowing in xdirection in the xy-plane , Φxz is the magnetic flux from currents
flowing in x-direction in the xz-plane , Φyx is the magnetic flux
from currents flowing in y-direction in the xy-plane , Φyz is the
magnetic flux from currents flowing in y-direction in the zy-plane ,
Φzx is the magnetic flux from currents flowing in z-direction in the
xz-plane , Φzy is the magnetic flux from currents flowing in zdirection in the zy-plane
E2=Ex2+Ey2+Ez2+Ect2
Ex=∫(d(Esxcdt)/cdT)-∫(d(Byxdy)/dT)∫(d(Bzxdz)/dT)=vt2Esx/c+∫(dEsx/(cdT))cdt(vyByx+∫(dByx/dT)dy)(vzBzx+∫(dBzx/dT)dz)=vt2μ0∫(ρ0vt)dx+μ0∬(d(ρ0vtdx)/dT)cdt(vyμ0∫jydx+μ0∬(d(jydx)/dT)dy)-(vzμ0∫jzdx+μ0∬(d(jzdx)/dT)dz)
Ey=∫(d(Esycdt)/cdT)-∫(d(Bxydx)/dT)∫(d(Bzydz)/dT)=vt2Esy/c+∫(dEsy/(cdT))cdt(vxBxy+∫(dBxy/dT)dx)(vzBzy+∫(dBzy/dT)dz)=vt2μ0∫(ρ0vt)dy+μ0∬(d(ρ0vtdy)/dT)cdt(vxμ0∫jxdy+μ0∬(d(jxdy)/dT)dx)-(vzμ0∫jzdy+μ0∬(d(jzdy)/dT)dz)
Ez=∫(d(Eszcdt)/cdT)-∫(d(Bxzdx)/dT)∫(d(Byzdy)/dT)=vt2Esz/c+∫(dEsz/(cdT))cdt(vxBxz+∫(dBxz/dT)dx)(vyByz+∫(dByz/dT)dy)=vt2μ0∫(ρ0vt)dz+μ0∬(d(ρ0vtdz)/dT)cdt(vxμ0∫jxdz+μ0∬(d(jxdz)/dT)dx)-(vyμ0∫jydz+μ0∬(d(jydz)/dT)dy)
Ect=∫(d(Bxctdx)/dT) +∫(d(Byctdy/dT)
+∫(d(Bzctdz/dT)=vxBxct+∫(dBxct/dT)dx+vyByct+∫(dByct/dT)dy+vz
Bzct+∫(dBzct/dT)dz=vxμ0∫jxcdt+μ0∬(d(jxcdt)/dT)dx+
vyμ0∫jycdt+μ0∬(d(jycdt)/dT)dy+vzμ0∫jzcdt+μ0∬(d(jzcdt)/dT)dz
Where E is the electric field Ex is the x-component of the electric
field , Ey is the y-component of the electric field , Ez is the zcomponent of the electric field and Ect is the time component of
the electric field. The force on a charge is F=QE
μ0 is the magnetic constant
U=∫Exdx+∫Eydy+∫Ezdz+∫Ectcdt=μ0∬(ρ0vtcdt/dT)(dx2+dy2+dz2)
-μ0∬( jxdx/dT)(dy2+dz2-(cdt)2)- μ0∬( jydy/dT)(dx2+dz2-(cdt)2)μ0∬( jzdz/dT)(dy2+dx2-(cdt)2) where U is the electric potential
W=QU is the spacetime energy for the charge Q
Uct=∫Ectcdt=∫(∫(d(Bxctdx)/dT) +∫(d(Byctdy/dT)
+∫(d(Bzctdz/dT))cdt=∫(
vxBxct+∫(dBxct/dT)dx+vyByct+∫(dByct/dT)dy+vzBzct+∫(dBzct/dT)dz
)cdt=∫( vxμ0∫jxcdt+μ0∬(d(jxcdt)/dT)dx+
vyμ0∫jycdt+μ0∬(d(jycdt)/dT)dy+vzμ0∫jzcdt+μ0∬(d(jzcdt)/dT)dz)c
dt
Where Uct is the potential in the time dimension and Wct=QUct is
the potential time energy for the charge Q
Ux=∫Exdx=∬(d(Esxcdt)/cdT)dx-∬(d(Byxdy)/dT)dx∬(d(Bzxdz)/dT)dx=∫(vt2Esx/c)dx+∬(dEsx/(cdT))cdtdx∫(vyByx+∫(dByx/dT)dy)dx∫(vzBzx+∫(dBzx/dT)dz)dx=vt2μ0∬(ρ0vt)(dx)2+μ0∭(d(ρ0vtdx)/dT)
cdtdx-∫(vyμ0∫jydx+μ0∬(d(jydx)/dT)dy)dx∫(vzμ0∫jzdx+μ0∬(d(jzdx)/dT)dz)dx=∬d(Esxcdt)/cdT)dx-dϕyx/dTdϕzx/dT
Uy=∫Eydy=∬(d(Esycdt)/cdT)dy-∬(d(Bxydx)/dT)dy∬(d(Bzydz)/dT)dy=∫(vt2Esy/c)dy+∬(dEsy/(cdT))cdtdy∫(vxBxy+∫(dBxy/dT)dx)dy∫(vzBzy+∫(dBzy/dT)dz)dy=vt2μ0∬(ρ0vt)(dy)2+μ0∭(d(ρ0vtdy)/dT
)cdtdy-∫(vxμ0∫jxdy+μ0∬(d(jxdy)/dT)dx)dy∫(vzμ0∫jzdy+μ0∬(d(jzdy)/dT)dz)dy=∬d(Esycdt)/cdT)dy-dϕxy/dTdϕzy/dT
Uz=∫Ezdz=∬(d(Eszcdt)/cdT)dz-∬(d(Bxzdx)/dT)dz∬(d(Byzdy)/dT)dz=∫(vt2Esz/c)dz+∬(dEsz/(cdT))cdtdz∫(vxBxz+∫(dBxz/dT)dx)dz∫(vyByz+∫(dByz/dT)dy)dz=vt2μ0∬(ρ0vt)(dz)2+μ0∭(d(ρ0vtdz)/dT)
cdtdz-∫(vxμ0∫jxdz+μ0∬(d(jxdz)/dT)dx)dz∫(vyμ0∫jydz+μ0∬(d(jydz)/dT)dy)dz=∬d(Eszcdt)/cdT)dz-dϕxz/dTdϕyz/dT
U=Ux+Uy+Uz+Uct
Ux is the electric potential in x-direction
Uy is the electric potential in y-direction
Uz is the electric potential in z-direction
Whit this theory you can easyli see that the induction and the lenz
law is coming from two fully separated magnetic fields and that is
therefore by reversing the magnetic field that gives the lenz law is
possible to build self powering generators that is powered by the
time dimension. The equations also enables FTL communication
whit rotating transmittor fields (more of that in another article
where i derives the lightspeed from these equations). I think that
these equations better describes electromagnetism than maxvell
heavyside equations.
c2=1/(ϵ0μ0) where ϵ0 is the electric constant
Related documents