Download Predator – Prey Simulation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Molecular ecology wikipedia , lookup

Maximum sustainable yield wikipedia , lookup

World population wikipedia , lookup

Human population planning wikipedia , lookup

Theoretical ecology wikipedia , lookup

Transcript
Predator – Prey Simulation
Purpose:
 Simulate and analyze the interactions between a predator population of coyotes and a
prey population of mice.
 Organize and graph data from the simulation, predicting future populations over
several generations
 Compare simulation results to data taken from nature
Background
Population dynamics is influenced by biotic and abiotic factors. Abiotic factors include climate,
soil, water, sunlight and air. Biotic factors include predation, disease, birth rate, and mortality
rate. In predation members of one species feed directly on another species. In this interaction, the
predator benefits and at the individual level the prey is clearly harmed. At the population level
the prey species can benefit because predators help to reduce competition for food amongst the
prey species and also sick and aged animals can be removed. Some species that interact as
predator and prey undergo cyclic changes in their numbers, with sharp increases and periodic
crashes. For example the snowshoe hare and its predator the Canadian lynx show this cycle very
clearly. The Lynx population rises, eats the hares which experience a decline in numbers. Then
there are few hares to eat so the lynx numbers decline. This is called top-down population
control. The other theory is that the numbers of hares determine how many lynxes there will be
and that factors that determine hare population are more important than the number of lynxes.
This is called bottom-up population control. In reality it is probably a combination of both.
Procedure
Place: A field (a small bowl) with a population of mice (beans) and a population of coyotes
(spoons). The mice are the prey and the coyotes are the predators.
Rules:
1. Surviving mice of each generation always double in number.
2. There must be at least 10 mice at the beginning of each generation.
3. There must be at least one coyote at the beginning of each generation, by immigration if
necessary.
4. The maximum number of mice is one hundred.
5. Each coyote must catch at least 5 mice to survive.
6. Each coyote must catch at least 5 mice to reproduce. (1offspring per 5 mice)
To Play:
1. Place 10 mice in the field.
2. Make 1 pass through the field with the spoon catching as many mice as possible.
3. Add more coyotes and mice according to the rules.
4. Record the starting number of mice and coyotes on the data table.
5. Repeat the predation, with each coyote representing 1 pass through the field. For example
if you have 3 coyotes, then you make three passes through the filed with each pass
representing each coyote.
6. Use a piece of graph paper to make one graph. On the x-axis of the graph put “Time in
generations” (Generation 1, 2, 3 etc). On the left side of the y-axis put number of mice
(starting number) and on the opposite side (the right side) label the y-axis number of
coyotes. The range on both sides of the y-axis will be different, but we want the
information for both animals on one graph so that we can se the relationship. Draw the
line for coyotes in blue and the line for mice in red.
Generation #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Mice (starting number)
Coyote (starting number)
Analysis
1. What do you predict would happen to the prey cycle if some coyotes died of disease or
were killed by humans? Explain your answer and on your graph use a green pencil to
show your prediction. Start your prediction after your last cycle on the graph and
continue three more generations.
2. What would happen to the coyotes on your graph if fire killed the prey population?
Explain and show on the graph with black pencil how the graph would change. Start
after your last cycle and continue three generations.
3. Why would it matter at what point in your simulation such disturbances occurred?
4. What is carrying capacity? What happens to a population that overshoots its carrying
capacity?
5. In this investigation you examined only the simple relationship between changing prey
populations and the number of predators. What other factors affect the number of prey
and predators in a population?
6. Describe an example of a predator being used to control a prey population that is
considered a pest. Explain scientifically why you think this is a good idea or not.
Read the article on the Moose of Isle Royal
(http://isleroyalewolf.org/overview/overview/at_a_glance.html)
Then graph the following information and answer the related questions.
~ The Moose and Wolves of Isle Royale
A Study of Population Change
Read these directions completely before starting this exercise.
Below is a data table that shows the estimated population numbers of moose, wolves, and balsam
fir trees and Isle Royale from 1960 to 2001. You will need to use the chart below to create a line graph
that shows the relationship between these organisms. You must chart the moose and wolf data, using a
different color for each group.
When you are finished graphing the moose and wolf data, graph the balsam fir data as a bar graph
(estimating the scale of “low, below average, average, above average, high, very high”) using the bottom
inch or so of the graph.
Make sure your graph has a title and the axes are clearly labeled. Use a ruler and graph paper.
After you finish the graph, answer the questions on the back of this sheet.
YEAR MOOSE WOLVES
BALSAM FIR GROWTH RATES
(estimates)
1960
637
22
average
1965
773
28
above average
1970
1522 18
low
1975
1462 41
low
1980
861 50
average
1985
968
22
very high
1990
1216 15
average
1991
1313 12
high
1992
1590 12
below average
1993
1879 13
average
1994
1995
1996
1997
1998
1999
2000
2001
1770
2422
1163
500
699
750
850
900
17
17
22
24
14
25
29
19
average
below average
below average
average
average
average
average
average
QUESTIONS
1) In what year did the wolf population peak?
2) In what year did the moose population peak?
3) What do you think could have happened to the wolf population in the early 1980’s?
4) What could have happened to the moose population in 1996 and 1997?
(It is a different reason than #3.)
5) Why wasn’t the wolf population also affected in 1996 and 1997?
6) What long-term effects could a large moose die-off have on the wolf population?
7) What will happen to the ecosystem if the wolf population numbers rose drastically?
8) How many wolves do you think will be living on Isle Royals five years from now? Explain.
9) Consider that the wolf numbers continue to decline so that they eventually become extinct on
the island. If this occurs, do you think wolves should be reintroduced into the Isle Royale
ecosystem? Explain your reasoning.
10) Is there any relationship between the moose population and balsam fir growth rates? Explain.
Conclusion
Write two paragraphs to summarize what you have learned through this lab.
Include one fact that you can find about the moose or wolf change from the study on the
Internet.
QUESTIONS
1) In what year did the wolf population peak?
2) In what year did the moose population peak?
3) What do you think could have happened to the wolf population in the early 1980’s?
4) What could have happened to the moose population in 1996 and 1997?
(It is a different reason than #3.)
5) Why wasn’t the wolf population also affected in 1996 and 1997?
6) What long-term effects could a large moose die-off have on the wolf population?
7) What will happen to the ecosystem if the wolf population numbers rose drastically?
8) How many wolves do you think will be living on Isle Royals five years from now? Explain.
9) Consider that the wolf numbers continue to decline so that they eventually become extinct on
the island. If this occurs, do you think wolves should be reintroduced into the Isle Royale
ecosystem? Explain your reasoning.
10) Is there any relationship between the moose population and balsam fir growth rates? Explain.
Conclusion
Write two paragraphs to summarize what you have learned through this lab.
Include one fact that you can find about the moose or wolf change from the study on the
Internet.
QUESTIONS
1) In what year did the wolf population peak?
2) In what year did the moose population peak?
3) What do you think could have happened to the wolf population in the early 1980’s?
4) What could have happened to the moose population in 1996 and 1997?
(It is a different reason than #3.)
5) Why wasn’t the wolf population also affected in 1996 and 1997?
6) What long-term effects could a large moose die-off have on the wolf population?
7) What will happen to the ecosystem if the wolf population numbers rose drastically?
8) How many wolves do you think will be living on Isle Royals five years from now? Explain.
9) Consider that the wolf numbers continue to decline so that they eventually become extinct on
the island. If this occurs, do you think wolves should be reintroduced into the Isle Royale
ecosystem? Explain your reasoning.
10) Is there any relationship between the moose population and balsam fir growth rates? Explain.
Conclusion
Write two paragraphs to summarize what you have learned through this lab.
Include one fact that you can find about the moose or wolf change from the study on the
Internet.
1.
2.
3.
4.
5.
How does the predator population vary when the prey numbers change?
Are the populations in phase with one another?
Are the population curves for the moose and the wolves similar in shape?
How do the curves differ from one another?
Describe how your simulation data are similar or different from the Isle Royal data. If
your results from your simulation are very different explain what could account for
this.