Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Linear and Pump-Probe applications of THz Spectroscopy: The case of Elettra, Bessy-II, and SPARC S. Lupi Dipartimento di Fisica, INFN-University of Rome La Sapienza, and SISSI@ELETTRA, Italy SISSI Synchrotron Infrared Source for Spectroscopy and Imaging Outline • • • • THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz Pulses @SPARC; Outline • • • • THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz Pulses @SPARC; THz Coherent radiation production from III Generation Machines: Bessy-II and Elettra Bessy-II ELETTRA Beamline SISSIIRIS Beamline /2 reference orbit: L = 240 m Take Home z E 3Message III Generation Machines High DL Rep Rate: 500 MHz CSR Low-Energy per pulse: pJ Gl Several ps bunch length Needed to compress the bunch momentum compaction factor: Itot ( ) Isp (Operation )[N N(N 1)F( )] Special Mode Linear Spectroscopy F( ) THz dzS(z)e i isz drastically enhanced. Emission in the FIR/THz range c U. Schade et al, PRL 2003 A. Perucchi et al,IP&T 2007 bunch, Dp Dp/p a = DL/L Outline • • • • THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz Pulses @SPARC; Superconductivity today: THz spectroscopy plays a fundamental role ... because Superconductivity is ruled by low-energy electrodynamics: • • Superconducting gap : THz range Spectral weight of condensate and penetration depth: THz • Mediators of pairing (phonons, etc.): THz • Range of sum rules: THz, Mid, or Near Infrared • Free-carrier conductivity above Tc: Infrared Basic optics of Superconductors Superconducting gap observed if: -sample in the dirty-limit (2D < G) -Cooper pairs in s-wave symmetry Minimum excitation energy: Cooper-pair breaking 2D 1.000 3 40x10 0.995 Reflectance 2D 0.990 Drude reflectance cm-1) Normal State T = 0.9 Tc T = 0.6 Tc T=0 0.980 0 30 Drude absorption 20 40 (cm-1) 60 80 100 ( ) sup 1 G 20 10 0.985 Normal State T = 0.9 Tc T = 0.6 Tc T=0 2 ps 8 ( ) 1reg ( ) 2D 0 0 50 Superconducting Gap 100 150 (cm-1) ∫ [, T>Tc) - , T<Tc)] dps/8 = nse2/m*--> l=c/ps Ferrel-Glover-Tinkham Rule 200 0 00 -5 -2 ZFC FC -4 -10 Oppenheimer Diamond 254.7 carats Takenouchi-Kawarada-Takano Diamond 0.7 carats 0 2 4 T(K) 6 8 (10-5e.m.u) (10-4e.m.u) Superconductivity in Boron doped Diamond B-Diamond: a text book example of BCS superconductivity ≤ G (T) : Rn () = 1 - [8G(T)/ p2]1/2 ≤ 2D(T) : Rs() = 1 Peak at 2D in Rs/Rn (THz) 0.0 0.2 0.4 0.6 T=2.6K 3.4 4.6 7.2 15 1.0 6 D(cm-1) 0.95 1.05 0.90 0.85 0.8 8 Rs(T) / Rn(15K) Reflectance 1.00 4 2 Mattis-Bardeen Model 0 0.0 0.5 1.0 T / TC 1.00 T=2.6 K 3.4 K 4.6 K 7.2 K 15 K 20 -1 cm ) 40 60 0 10 20 30 (cm-1) s-wave Dirty-Limit Regime; 2D(0)=12±1 cm-1 2D0/kBTC=3.2 ± 0.5 M. Ortolani et al, PRL, 2006 Mott-Hubbard Insulator to Metal Transitions Filling-Controlled MIT: U Coulomb repulsion t Bandwidth Bandwidth-Controlled MIT: • static (pressure) • static (doping) Mott-Hubbard Insulator to Metal Transition Pressure (Bandwidth) controlled MIT VO2 V2O3 E. Arcangeletti et al, PRL (2007) Outline • • • • THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz Pulses @SPARC; Breaking Cooper Pairs Dynamically Photoionization For hω>2Δ light breaks Cooper pairs 1) Optical Pump - Optical Probe (THz Probe) hω>>2Δ Recombination Dynamics affected by excess phonons 2) THz Pump – THz Probe hωTHz≥2Δ Intrinsic dynamics Alternative processes if hω<2Δ Δ=Δ(J, B) at fixed T<Tc The high E (~MV) THz field may induce currents exceeding the critical current (breaking the Superconducting State with an Electric Field) The high B (~1 T) THz field may be larger that Bc (breaking the Superconducting State with a magnetic Field) THz controlled Mott-Hubbard MIT Filling-Controlled MIT: U Coulomb repulsion t Bandwidth • static (Doping) •Dynamic (Phoexcitation) Bandwidth-Controlled MIT: • static (Pressure) •dynamic (Radiation) THz pulses in the MV/cm range can drive lattice displacements in the pm range Dynamical modulation of U through intramolecular pumping Outline • • • • THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz Pulses @SPARC; Free Electron Laser SPARC@INFN Acceleration section Beam energy 155–200 MeV Bunch charge 1 nC Rep. rate 10 Hz Peak current 100 A en 2 mm-mrad en(slice) 1 mm-mrad g 0.2% Bunch length (FWHM) 10 ps-100 fs Laser CTR-THz Radiation Transition Radiation occurs when an electron crosses the boundary between two different media Intensity is 0 on axis and peaked at Q~/g Polarization is radial Velocity Bunching: Bunch length versus injection phase Time If the beam injected in a long accelerating structure at the crossing field phase and it is slightly slower than the phase velocity of the RF wave , it will slip back to phases where the field is accelerating, but at the same time it will be chirped and compressed. Velocity Bunching 0.876 ps/mm t = 160 fs 1.389 ps/mm t = 2.586 ps CTR-THz emission 300 fs, 500 pC 500 fs, 250 pC 2 ps E. Chiadroni et al., J.Phys. 2012 E. Chiadroni et al. APL 2012 S Lupi et al ., J. Phys 2012 M. Ferrario et al., NIM A 2011 CTR measured emission from LINACs Electron beam energy Charge Dt (bandwidth) THz pulse energy E-field Brookhaven(1) 120 MeV ~ 1 nC (2 THz) ≈100 J MV/cm SPARC(2) 120 MeV 500 pC 120 fs (10 THz) ≈100 J MV/cm FLASH(3) 1.2 GeV 600 pC (4 THz) >100 J MV/cm LCLS(4) 14.5 GeV 350 pC 50 fs (40 THz) 140 J >20 MV/cm (1) Y. Shen et al., Phys. Rev. Lett. 99, 043901 (2007) Chiadroni, et al., APL 2012 (3) M.C. Hoffmann et al., Optics Letters 36, 4473 (2011) (4) D. Daranciang et al., Appl. Phys. Lett. 99, 141117 (2011) (2) E. Perspectives • Increase machine energyincrease of bunch-charge (1 nC); • Tailoring the electronic bunch shapeextended spectral coverage (20 THz); • Narrow band THz radiationSmith-Purcell Radiation: Narrow-band and Tunable THz Radiation Acknowledgments • • • • A. Perucchi (SISSI@ELETTRA) E. Karanzoulis (ELETTRA) U. Schade (IRIS@BESSY-II) E.Chiadroni and M. Ferrario (LFN-INFN): TERASPARC project Thank for your attention