Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Calculating the entropy on-the-fly Daniel Lewandowski Faculty of Information Technology and Systems, TU Delft Introducing a function h. h - is a measure of the uncertainty about the outcome of an experiment modelled using probability distributions Assumptions We assume that h: •depends only on the probability of the outcome of an experiment or event •takes values in non-negative real numbers •is a continuous and decreasing function •h(p1p2)=h(p1)+h(p2) The assumptions forces h to be of the form: h(p)= - C log(p) Definition of entropy The entropy H is the expectation of the function h. Example: x1, x2,…,xn are realizations of a rand. variab. X with probabilities p1, p2,…,pn respectively. Then the entropy of X is: H ( X ) C pi log pi i Units in which the entropy is measured log2(x) – bits log3(x) – trits ln(x) – nats log10(x) – Hartleys Entropy of some continuous distributions •The standard normal (Gaussian) distribution: H = 1,4189 •The Weibull distribution (=1,127; =2,5): H = 0,5496 •The Weibull distribution (=1,107; =1,5): H = 0,8892 •The gamma distribution (==5): H = 0,5441 Approximation of the density Y1,Y2,…,Yn – samples D0,D1,…,Dn – midpoints D0=Y1 – (Y2 – Y1)/2, Di=Yi+1 – (Yi+1 – Yi)/2, Dn=Yn + (Yn – Yn-1)/2, for i=2,…,n-1 Computations The density above the Yi is estimated as: 1 Pi N Di Di 1 The entropy is then computed as: 1 N 1 H ln N i 1 N ( Di Di 1 ) Grouping samples Remark: The result of calculating the entropy without grouping samples is biased – the bias is asymptotically equal to - 1 + ln2, ( - Euler constant) 2,5) 1000 Weibull ples eanw 1, eta ithgrouping grouping 1000 standard al sam(m ples ith grouping (theoretical value 1000 gam mnorm asam sam ples (rho ==lam bda==1,5) 5) ww ith 0,5496) 1,4189) (theoretical value 0,8892) 0,5441) Entropy ungro ungrouped uped 1.6 1 0.7 1.4 0.6 0.8 1.2 0.5 1 0.6 0.4 0.8 0.3 0.4 0.6 0.2 0.4 0.2 0.1 0.2 0 gro uped by 5 gro uped by 5 gro uped by 25 50 gro uped by 25 gro uped by 100 1 3 55 7 99 11 11 13 Iteration nr 15 17 17 19 Numerical test – 5000 samples Entropy 1,324 1,418 1,438 1,458 1,399 1,372 1,159 Exact : 1,418 The red line marks the exact density function of a standard normal vrb. Results – 20 iterations (1000 samples) by 1’s by 25’s by 50’s by 100’s standard normal Weibull =2,5 Weibull =1,5 gamma ==5 mean 1,149 0,285 0,613 0,274 deviation 0,025 0,0181 0,018 0,0266 mean 1,424 0,546 0,881 0,546 deviation 0,014 0,0222 0,0209 0,0243 mean 1,459 0,568 0,904 0,575 deviation 0,033 0,0266 0,0267 0,029 mean 1,506 0,616 0,943 0,628 deviation 0,039 0,028 0,0332 0,034 Compare results to exact solutions from slide 6 Updating the distribution before updating after updating Dk Yk D(N+1) Y(N+1) Dk+1 D(N+2) Yk+1 Dk+2 Updating the entropy HN – the entropy calculated based on N samples. H N 1 1 H N ln N N A B ln N 1 N 1 where: A ln Dk 1 Dk ln Dk 2 Dk 1 B ln D N 1 Dk ln D N 2 D N 1 ln Dk 2 D N 2 The program - properties •Uses the approach from the previous slide •Starts updating the entropy from N=4 •Written in VBA, uses spreadsheet only to store the samples •Results exactly the same as computed in Matlab (for the same samples) •It is not grouping samples Results Comparison of results obtained using formula and program (5000 samples – without grouping and adding the bias). formula program standard normal 1,143918 1,143918 Weibull =2,5 0,290707 0,290707 Weibull =1,5 0,634027 0,634027 gamma ==5 0,280102 0,280102 The program updates the entropy HN starting from N = 4. Results, cont. exact solution program (1000 program (5000 samples) samples) standard normal 1,4189 1,4272 1,4209 Weibull =2,5 0,5496 0,5482 0,5709 Weibull =1,5 0,8892 0,8543 0,8849 gamma ==5 0,5441 0,5206 0,5544 Relative information – theoretical value = 2,0345 I(X|Y), 1000 samples, X=N(0,1), Y=N(5,3) ungrouped grouped by 2's grouped by 5's 2,40 Relative information grouped by 10's 2,30 2,20 2,10 2,00 1,90 1,80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 iteration nr