Download Bohr Half Quantum Physics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum Physics
Schrödinger
Quantum Physics
Particle in 1D box - Infinite Potential
Classical
p
Classical:
x0
p  mv
1 2
1
p2
2
E  mv 
(mv) 
2
2m
2m
p
xL
x
p  2mE
x
p   2mE
Bohr
Half Quantum Physics:
 pdx  nh
Bohr
n 2 2 h 2
2  L  2mE  n2h  E 
2mL2
Quantum Physics
Particle in 1D box - Infinite Potential
Scrödinger Equation

 h2 d 2
)
x
(
V


 ( x)  E ( x)

2
dx
m
2


 d2
2mEn
2
2
kn 
k

n  n ( x )  0
 2
h2

 dx
 n ( x)  Aeik x  Be ik x  C cos k n x  D sin k n x
 n ( 0)   n ( L )  0

n
n
C  0 sin k n L  0 k n  n
L

 n ( x) 
nx
2
sin
L
L
n 2 2 h 2
En 
2mL2
Quantum Physics
Particle in 1D box - Infinite Potential
Scrödinger Equation
 h2 d 2



V
(
x
)

 ( x)  E ( x)
2
2
m
dx


 d2
2mEn
2
2

k

(
x
)

0
k

n  n
n
 2
h2
 dx

 n ( x)  Aeik x  Be ik x  C cos k n x  D sin k n x
 n (0)   n ( L)  0
n
n
C  0 sin k n L  0 k n  n

L
2
nx
sin
L
L
 n ( x) 
 n ( x) 
n 2 2 h 2
En 
2mL2
2
nx
sin
L
L
 ( x, t )  e
i
En t
h
 n ( x)  e
i
En t
h
2
nx
sin
L
L
U0
Quantum Physics
Particle in 1D box - Finite Potential
Scrödinger Equation
 h2 d 2



V
(
x
)

 ( x)  E ( x)
2
2
m
dx


Inside: V(x) = 0
 d2
2mEn
2
2

k
kn 
n  n ( x )  0
 2
h2
 dx

 n ( x)  Aeikn x  Be ikn x  C cos k n x  D sin k n x
 h2 d 2



V
(
x
)

 ( x)  E ( x)
2
2
m
dx


 d2

2m(U 0  E )
2



(
x
)

0


 2

h2
 dx

 ( x)  Re x  Se x
Outside: V(x) = U0
x  0 : S  0x  L : R  0
The solutions and it’s derivative must match at the boundary
Quantum Physics
Tunneling - Def
 h2 d 2



V
(
x
)

 ( x)  E ( x)
2
2
m
dx


Outside: V(x) = 0
 d2
2mEn
2
2

k
kn 
n  n ( x )  0
 2
h2
 dx

 n ( x)  Aeikn x  Be ikn x  C cos k n x  D sin k n x
 h2 d 2



V
(
x
)

 ( x)  E ( x)
2
2
m
dx


 d2

2m(U 0  E )
2



(
x
)

0


 2

h2
 dx

Inside: V(x) = U0
 ( x)  Re x  Se x
Tunneling probability T that the particle gets through the barrier is
proportional to the square of the ratio of the amplitudes of the
sinusoidal wave function on the two sides of the barrier.
T  Ge2L
G  16

E 
E 
1 

U0  U0 
2mU 0  E 
h
Quantum Physics
Tunneling - Example - Electron
A 2.0 eV electron encounters a barrier 5.0 eV heigh.
What is the probability that it will tunnel through the barrier
if the barrier width is a) 1.00 nm b) 0.50 nm ?
T  Ge
 2L
E 
E  2
1 
e
 16
U0  U0 
2 m U 0  E 
h
L
U 0  5.0eV  5.0 1.602 10 19 J
E  2.0eV  2.0 1.602 10 19 J
m  9.1110 31 kg
h  6.626 10 34 Js
h
h
2
a)
G  16
b)
L  1.00m  1.00 10 9 m
T  7.1 10
T  Ge2L
8
L  0.50nm  0.50 10 9 m
T  5.2 10
4

E 
E 
1 

U0  U0 
2mU 0  E 
h
Related documents