* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Automatic Conflict Resolution to Integrate Relational Databases
Extensible Storage Engine wikipedia , lookup
Concurrency control wikipedia , lookup
Microsoft SQL Server wikipedia , lookup
Relational algebra wikipedia , lookup
Functional Database Model wikipedia , lookup
Microsoft Jet Database Engine wikipedia , lookup
Open Database Connectivity wikipedia , lookup
Entity–attribute–value model wikipedia , lookup
Clusterpoint wikipedia , lookup
Versant Object Database wikipedia , lookup
Automatic Conflict Resolution to Integrate Relational Databases Ramon Lawrence University of Manitoba [email protected] Outline Introduction, Motivation, and Background The integration architecture Standard Example dictionary, X-Specs, query processor integration Northwind, Querying Southstorm databases the integrated databases Generating SQL queries from semantic queries Unity implementation Contributions, Conclusions, and Future Work Page 2 What is Integration? Two levels of integration: Schema integration - the description of the data Data integration - the individual data instances Integration problems include: Different data models and conflicts within a model Incompatible concept representations Different user or view perspectives Naming conflicts (homonym, synonym) Integration handles the different mechanisms for storing data (structural conflicts), for referencing data (naming conflicts), and for attributing meaning to the data (semantic conflicts). Page 3 Why is Integration Required? There are many integration environments: Operational systems within an organization System integration during company merger Data warehouses, Intranets, and the WWW Users require information from many data sources which often do not work together. Companies require a global view of their entire operations which may be present in numerous operational databases for different departments and distributed geographically. E-commerce demands integration of web databases with production systems. Page 4 Previous Work Research systems: integrating systems by logical rules (Sheth) defining global dictionaries (Castano) Carnot Project using the Cyc knowledge base wrapper and mediator systems: Information Manifold, TSIMMIS, Infomaster Industrial systems and standards: Metadata Interchange Specification (MDIS) XML, BizTalk, E-commerce portals Query Languages: SQL, MSQL, IDL, DIRECT, SchemaSQL Page 5 Previous Work Summary Current techniques for database integration have some of these problems: Require integrator to understand all databases Integration process is manual Do not hide system complexity from the user Force changes on the existing database systems Construct global view manually Suffer from query imprecision (query containment) Page 6 Our Approach Our approach combines standardization and query mapping algorithms. The major idea is that schema conflicts can be resolved if we: Eliminate all naming conflicts Define a language capable of determining schema equivalence and performing transformations Naming conflicts are eliminated by accepting a standard term dictionary. Not a knowledge base or set of mediated views Leverages semantic information in English words Page 7 Integration Architecture Client Client Multidatabase Layer • user’s view of integration 2) X-Spec Editor Integrated Context View X-Spec Editor Standard Dictionary Architecture Components: 1) Integrated Context View • stores schema & metadata • uses XML Integration Algorithm 3) Standard Dictionary • terms to express semantics 4) Integration Algorithm Query Processor and ODBC Manager 5) Query Processor Subtransactions X-Spec X-Spec Database Database Local Transactions • combines X-Specs into integrated context view • accepts query on view • determines data source mappings and joins • executes queries and formats results Architecture Components The architecture consists of four components: A standard dictionary (SD) to capture data semantics SD terms are used to build semantic names describing semantics of schema elements. X-Specs for storing data semantics Database metadata and semantic names stored using XML Integration Algorithm Matches concepts in different databases by semantic names. Produces an integrated view of all database concepts. Query Processor Allows the user to formulate queries on the view. Translates from semantic names in integrated view to SQL queries and integrates and formats results. Involves determining correct field and table mappings and discovery of join conditions and join paths Page 9 Integration Processes The integration architecture consists of three separate processes: Capture process: independently extracts database schema information and metadata into a XML document called a X-Spec. Integration process: combines X-Specs into a structurally-neutral hierarchy of database concepts called an integrated context view. Query process: allows the user to formulate queries on the integrated view that are mapped by the query processor to structural queries (SQL) and the results are integrated and formatted. Page 10 Integration Architecture: The Capture Process Relational Schema Automatic Extraction Specification Editor Standard Dictionary Capture X-Spec DBA Lookup of terms process involves: Automatically extracting the schema information and metadata using a specification editor Assigning semantic names to each schema element (tables and fields) to capture their semantics Page 11 Architecture Components: The Standard Dictionary A standard dictionary (SD) provides standardized terms to capture data semantics. Hierarchy of terms related by IS-A or Has-A links Contains base set of common database concepts, but new concepts can be added A SD term is a single, unambiguous semantic definition. Several SD entries for a single English word are required if the word has multiple definitions. The top-level dictionary terms are those proposed by Sowa. Page 12 Architecture Components: Dictionary vs. Knowledge Base The standard dictionary differs from a knowledge base such as Cyc because: Not intended to be a general English dictionary or contain knowledge facts about the world Dictionary is evolved as new terms are required Not all English words are used Dictionary provides the systems with no “knowledge” Since no facts are stored, system cannot deduce new facts Dictionary terms are just semantic place holders, integrators determine the semantics of the database not the system Simplified organization Dictionary is organized as a tree for efficiency and simplicity in determining related concepts Re-use of terms Terms are re-used in semantic names Page 13 Architecture Components: Using the Standard Dictionary SD terms are used to build semantic names describing semantics of schema elements. Semantic names have the form: semantic name := [CT_Type] | [CT_Type] CN CT_Type := CT | CT {; CT} | CT {,CT} CT := context term, CN := concept name each CT and CN is a single term from the SD Semantic names are included in specifications describing a database. Page 14 Northwind & Southstorm Integration Example Northwind Database Schema Tables Categories Customers Employees OrderDetails Order Products Shippers Suppliers Fields CategoryID, CategoryName CustomerID, CompanyName EmployeeID, LastName, FirstName OrderID, ProductID, UnitPrice, Quantity OrderID, CustomerID, EmployeeID, OrderDate, Shipvia ProductID, ProductName, SupplierID, CategoryID ShipperID, CompanyName SupplierID, CompanyName Page 15 Northwind & Southstorm Integration Example (2) Southstorm Database Schema Tables Fields Orders_tb Order_num, Cust_name, Emp_name, Item1_id, Item1_qty, Item1_price, Item2_id, Item2_qty, Item2_price Page 16 Integration Example (3) Northwind Semantic Name Mappings Type T F F T F F T F F F T F F F F Semantic Name [Category] [Category] Id [Category] Name [Customer] [Customer] Id [Customer] Name [Employee] [Employee] Id [Employee] Last Name [Employee] First Name [Order;Product] [Order] Id [Order;Product] Id [Order;Product] Price [Order;Product] Quantity System Name Categories CategoryID CategoryName Customers CustomerID CompanyName Employees EmployeeID LastName FirstName OrderDetails OrderID ProductID UnitPrice Quantity Type T F F F F F T F F F F T F F T F F Semantic Name [Order] [Order] Id [Order;Customer] Id [Order;Employee] Id [Order] Date [Order;Shipper] Id [Product] [Product] Id [Product] Name [Product;Supplier] Id [Product;Category] Id [Shipper] [Shipper] Id [Shipper] Name [Supplier] System Name Orders OrderID CustomerID EmployeeID OrderDate Shipvia Products ProductID ProductName SupplierID CategoryID Shippers ShipperID ShipperName Suppliers [Supplier] Id [Supplier] Name SupplierID SupplierName Page 17 Northwind & Southstorm Integration Example (4) Southstorm Semantic Name Mappings Type Table Field Field Table Field Field Table Field Field Field Semantic Name [Order] [Order] Id [Order;Customer] Name [Order;Employee] Name [Order;Product] Id [Order;Product] Quantity [Order;Product] Price [Order;Product] Id [Order;Product] Quantity [Order;Product] Price System Name Orders_tb Order_num Cust_name Emp_name Item1_id Item1_qty Item1_price Item2_id Item2_qty Item2_price Page 18 What is a semantic name? A semantic name is a universal, semantic identifier in a domain. Similar to a field name in the Universal Relation. Semantics are guaranteed unique by construction. System has mechanism for comparing semantics across domains even though it does not understand them. (Exploiting semantics in English words.) Important context definitions: - a semantic name is a context if it maps to a table concept - a semantic name is a concept if it maps to a field context closure - of semantic name Si denoted Si* is the set of semantic names produced by taking ordered subsets of the terms of Si = {T1, T2 , … TN} starting with T1. Page 19 Architecture Components: X-Specs Database metadata and semantic names are combined into specifications called X-Specs: Stored and transmitted using XML Contains information on a relational schema Organized into database, table, and field levels Stores semantic names to describe and integrate schema elements Page 20 Southstorm X-Spec <?xml version="1.0" ?> <Schema name = "Southstorm_xspec.xml” xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-com:datatypes"> <ElementType name="[Order]" sys_name = "Orders_tb" sys_type="Table"> <element type = "[Order] Id" sys_name = "Order_num" sys_type = "Field"/> <element type = "[Order] Total Amount" sys_name = "Order_total" sys_type = "Field"/> <element type = "[Order;Customer] Name" sys_name = "Cust_name" sys_type = "Field"/> <element type = "[Order;Customer;Address] Address Line 1" sys_name="Cust_address" sys_type="Field"/> <element type = "[Order;Customer;Address] City" sys_name = "Cust_city" sys_type = "Field"/> <element type = "[Order;Customer;Address] Postal Code" sys_name="Cust_pc" sys_type="Field"/> <element type = "[Order;Customer;Address] Country" sys_name="Cust_country" sys_type="Field"/> <element type = "[Order;Product] Id" sys_name = "Item1_id" sys_type = "Field"/> <element type = "[Order;Product] Quantity" sys_name = "Item1_quantity" sys_type = "Field"/> <element type = "[Order;Product] Price" sys_name = "Item1_price" sys_type = "Field"/> <element type = "[Order;Product] Id" sys_name = "Item2_id" sys_type = "Field"/> <element type = "[Order;Product] Quantity" sys_name = "Item2_quantity" sys_type = "Field"/> <element type = "[Order;Product] Price" sys_name = "Item2_price" sys_type = "Field"/> </ElementType> </Schema> Page 21 Integration Product: The Integrated Context View The product of the integration is a structurallyneutral hierarchy of concepts called an integrated context view. Define a context view (CV) as follows: If a semantic name Si is in CV, then for any Sj in Si*, Sj is also in CV. For each semantic name Si in CV, there exists a set of zero or more mappings Mi that associate a schema element Ej with Si. A semantic name Si can only occur once in the CV. A context view (CV) is a valid Universal Relation. Each field is assigned a semantic name which uniquely identifies its semantic connotation. Page 22 Northwind & Southstorm Integration Example Integrated Context View Integrated View Term V (view root) - [Category] - Id - Name - [Customer] - Id - Name - [Employee] - Id - [Name] - First Name - Last Name - [Product] - Id - Name - [Supplier] - Id - [Category] - Id Data Source Mappings (not visible to user) Integrated View Term Data Source Mappings (not visible to user) N/A NW.Categories NW.Categories.CategoryID NW.Categories.CategoryName NW.Customers NW.Customers.CustomerID NW.Customers.CompanyName NW.Employees NW.Employees.EmployeeID V (view root) (cont.) - [Order] -Id - [Customer] - Id - Name - [Employee] - Id - Name - [Product] - Id - Price - Quantity - [Shipper] - Id - Name - [Supplier] - Id - Name N/A NW.Orders, SS.Orders_tb NW.[Orders,OrderDetails].OrderID, SS.Orders_tb.Order_num NW.Employees.FirstName NW.Employees.LastName NW.Products NW.Products.PrdouctID NW.Products.ProductName NW.Products.SupplierID NW.Products.CategoryID NW.Orders.CustomerID SS.Orders_tb.Cust_name NW.Orders.EmployeeID SS.Orders_tb.Emp_name NW.OrderDetails NW.OrderDetails.ProductID, SS.Orders_tb.Item[1,2]_id NW.OrderDetails.UnitPrice, SS.Orders_tb.Item[1,2]_price NW.OrderDetails.Quantity, SS.Orders_tb.Item[1,2]_qty NW.Shippers NW.Shippers.ShipperID NW.Shippers.ShipperName NW.Suppliers NW.Suppliers.SupplierID NW.Suppliers.SupplierName Page 23 Architecture Components: The Query Processor The query processor: Allows the user to formulate queries on the view. Translates from semantic names in the context view to structural queries (SQL) on databases. Involves determining correct field and table mappings and discovery of join conditions and join paths Retrieves query results and formats them for display to the user. Client-side query processing: Perform joins between databases using common keys. Data value formatting and transformation Page 24 Advanced Query Processing Advanced query processor features include: global keys and joins - a mechanism for specifying when a field stores a global key such as a social security number. result normalization - a procedure for normalizing query results returned from each individual database. (e.g. Southstorm) data integration - transforming data representational conflicts at the global level. For example, “M” and “F” may represent “Male” and “Female” in one database, and another may represent these concepts using “0” and “1”. Page 25 Northwind & Southstorm Query Examples Example 1: Retrieve all order ids ([Order] Id) and customers ([Customer] Name): SS: SELECT Order_num, Cust_name FROM Orders_tb NW: SELECT OrderID, CompanyName FROM Orders, Customers WHERE Orders.CustomerID = Customers.CustomerID Example 2: Retrieve all ordered products ([Order;Product] Id) and their order ids. SS: SELECT Order_num, Item1_id, Item2_id FROM Orders_tb NW: SELECT OrderID, ProductID FROM OrderDetails Note: In NW, selects from two different order id mappings. In SS, result normalization is required. Page 26 Integration Example: Discussion Important points: System table and field names are not presented to the user who queries based on semantic names. Database structure is not shown to the user. Field and table mappings are automatically determined based on X-Spec information. Join conditions are inserted as needed when available to join tables. Different physical representations for the same concept are combined. Hierarchically related concepts are combined based on their IS-A relationship in the standard dictionary. Page 27 Unity Overview Unity is a software package that implements the integration architecture with a GUI. Developed using Microsoft Visual C++ 6 and Microsoft Foundation Classes (MFC). Unity allows the user to: Construct and modify standard dictionaries Build X-Specs to describe data sources Integrate X-Specs into an integrated view Transparently query integrated systems using ODBC and automatically generate SQL transactions Unity is available for demonstration and distribution. Page 28 Architecture Discussion The architecture automatically integrates relational schemas into a multidatabase. Desirable properties: Individual mappings - information sources integrated one-at-a-time and independently Integrated view constructed for query transparency user queries system by semantics instead of structure Handles schema conflicts - including semantic, structural, and naming conflicts Automated integration - integrated view constructed efficiently and automatically No wrapper or mediator software is required Transparent querying - users issue semantic queries which are translated to SQL by the query processor Page 31 Contributions Architecture Has contributions: an unique application of a standard dictionary which is not a knowledge base Separates the capture and integration processes Produces an integrated, high-level view of all concepts in the underlying databases Allows transparent querying without structure Provides algorithms for dynamically extracting database data (creating relevant views) and for mediation of global level conflicts Arguably simpler method for capturing data semantics than using description logic An implementation, Unity, which demonstrates the practical benefits of the architecture Page 32 Conclusions & Future Work Automatic database integration is possible by using a standard term dictionary and defining semantic names for schema elements. Users are able to transparently query integrated systems by concept instead of structure. We are constantly refining Unity. Develop an integration component for a web browser Test the system in large industrial projects. Allow distributed updates and global updates on all databases. Page 33 References Publications: Unity - A Database Integration Tool, R. Lawrence and K. Barker, TRLabs Emerging Technology Bulletin, January 2000. Multidatabase Querying by Context, R. Lawrence and K. Barker, DataSem2000, pages 127-136, Oct. 2000. Integrating Relational Database Schemas using a Standardized Dictionary, SAC’2001 - ACM Symposium on Applied Computing, March, 2001. Sponsors: NSERC, Further TRLabs Information: http://www.cs.umanitoba.ca/~umlawren/ Page 34