Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Week 3 • Last week • Vectors • Array Addressing • Mathematical Operations • • • • Array Multiplication and Division Identity Matrix Inverse of a Matrix Element by Element Calculations Array Addressing A= 1 4 7 2 5 8 3 6 9 >> B = A([2 3],[2 3]) B= 5 8 6 9 >> B = A(2:3,2:3) B= 5 8 6 9 Vectors >> q = 0:0.1:2*pi; % semicolon suppresses output >> y=sin(q); % Comment after % is ignored >> plot(q,y) Transpose Interchange rows and columns >> X = [1 2 3 4 5 6 7 8 9 10] X= 1 2 3 4 6 7 8 9 >> X' ans = 1 6 2 7 3 8 4 9 5 10 5 10 Vector Functions A = [ 1 2 3 4 5 6] sum(A) = 21 max(A) = 6 min(A) = 1 Random Arrays >> A = rand(4,3) A= 0.9501 0.2311 0.6068 0.4860 0.8913 0.7621 0.4565 0.0185 0.8214 0.4447 0.6154 0.7919 Sound Files sound_in.m creates an array called data. data is an array of one column with 10,000 rows Sounds can be saved under different names Yes = data; and = data; No = data; Arrays can be concatenated to form longer sounds yesandNo = [Yes; and; No] Array Multiplication • Y = A*B • The number of columns in A must equal the number of rows in B. Multiplication Example • • • • • • • • C(1,1) = 1*1 + 2*2 + 3*3 = 14 C(1,2) = 1*2 + 2*1 + 3*1 = 7 C(2,1) = 3*1 + 2*2 + 1*3 = 10 C(2,2) = 3*2 + 2*1 + 1*1 = 9 C(3,1) = C(3,2) = C(4,1) = C(4,2) = Errors A= 1 4 7 2 5 8 3 6 9 >> C= ones(3,2) C= 1 1 1 1 1 1 >> A*C ans = 6 6 15 15 24 24 >> C*A ??? Error using ==> * Inner matrix dimensions must agree. Example >> BV = [3; 1; 4] BV = 3 1 4 >> AV = [2 5 1] AV = 2 5 1 >> AV*BV ans = 15 >> BV*AV ans = 6 15 3 2 5 1 8 20 4 % AV*BV is the dot product % The number of columns in % AV equals the number of % rows in BV % AV*BV is a scalar % Rows in BV = 3 % Columns in AV = 3 % BV&AV is a 3x3 array Identity Matrix >> I = eye(3) I= 1 0 0 0 1 0 0 0 1 Identity Matrix • Multiplying a matrix by the identity matrix is equivalent to multiplication by one >> I = eye(3) I= 1 0 0 0 1 0 0 0 1 If A is square AI = IA = A Inverse of a Matrix • The matrix B is the inverse of the matrix A if • BA = AB = I • where I is the identity matrix • • • • • • • • • • • • >> A =[ 1 2; 2 3] A= 1 2 2 3 >> B = A^-1 B= -3 2 2 -1 >> A*B ans = 1 0 0 1 Array Division Solve for X where A*X = B A and B are known arrays. A^-1 *A*X = A^-1 *B Since A^-1* A = I X = A^-1* B Left Division X = A\B Division Example • • 2x - 3y + 4z = 10 • x + 6y - 3z = 4 • -5x + y + 2z = 3 • A*X = B • where • • • • • • • • • • • 2 -3 4 1 6 -3 -5 1 2 B = 10 4 3 >> X = A\B X= 1.2609 2.2261 3.5391 >> 2*X(1) -3*X(2) + 4*X(3) ans = 10 A= Element by Element Operations • If the usual symbols (* / ^) are used operations follow the rules of linear algebra. Sometimes we don’t want this. • Given x = [1 2 3] • And y = [2 4 6] • Find z = [x(1)*y(1), x(2)*y(2), x(3)*y(3)] • Use the dot product operator .* • z = x .*y = [2 8 18] Element by Element Operators • • • • Multiplication Division Exponentiation Left Division • • • • x = A .*B x = A ./ B x = A .^ y x = A .\B .* ./ .^ .\ x(n) = A(n)*B(n) x(n) = A(n)/B(n) x(n) = A(n)^y(n) x(n) = B(n)/A(n) Element by Element Example A=[0 1 2 3 4] B=[5 4 3 2 1] >> A .*B ans = 0 4 6 6 >> A ./B ans = 0 0.2500 >> A .^2 ans = 0 1 4 9 4 0.6667 16 1.5000 4.0000 Element by Element Calculation • >> x= 0:0.1:10; • >> y = x .^2; • >> plot(x,y)