Download 06. World and Ukrainian Medicine in the ХІХ–XX

yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Infection wikipedia, lookup

Diseases of poverty wikipedia, lookup

Hygiene hypothesis wikipedia, lookup

Syndemic wikipedia, lookup

Medicine wikipedia, lookup

Transmission (medicine) wikipedia, lookup

Disease wikipedia, lookup

History of intersex surgery wikipedia, lookup

Lecture 6
World and Ukrainian Medicine in the ХІХ–
XX-th century
Lecture Plan
1. Development of Physiology.
2. Verification of the germ theory.
3. Discoveries in clinical medicine and anaesthesia.
4. Advances at the end of the century.
1. Infectious diseases and chemotherapy.
2. Sulfonamide drugs, antibiotics.
3. Development of Immunology. Immunization against viral
4. Development of Endocrinology.
5. Development of Surgery in the 20-th century.
By the beginning of the 19th century,
the structure of the human body
was almost fully known, due to new
methods of microscopy and of
injections. Even the body's
microscopic structure was
understood. But as important as
anatomical knowledge was an
understanding of physiological
processes, which were rapidly
being elucidated.
In Germany physiology became established as
a distinct science under the guidance of
Johannes Müller, who was a professor at
Bonn and then at the University of Berlin. An
energetic worker and an inspiring teacher, he
described his discoveries in a famous
textbook, Handbuch der Physiologie des
Menschen (“Manual of Human Physiology”),
published in the 1830s.
Among Müller's illustrious pupils were
Hermann von Helmholtz, who made
significant discoveries relating to sight and
hearing and who invented the
ophthalmoscope; and Rudolf Virchow,
one of the century's great medical
scientists, whose outstanding achievement
was his conception of the cell as the centre
of all pathological changes.
Hermann von
German scientist, made
contributions to
physiology and physics
in the 19th century.
Rudolf Virchow (1821—1902)
In France the most brilliant
physiologist of the time was
Claude Bernard, whose many
important discoveries were the
outcome of carefully planned
experiments. His researches
clarified the role of the pancreas in
digestion, revealed the presence of
glycogen in the liver, and explained
how the contraction and expansion
of the blood vessels are controlled
by vasomotor nerves. He proposed
the concept of the internal
environment — the chemical
balance in and around the cells —
and the importance of its stability.
Claude Bernard (1813—1878)
Perhaps the overarching medical advance
of the 19th century, certainly the most
spectacular, was the conclusive
demonstration that certain diseases, as
well as the infection of surgical wounds,
were directly caused by minute living
organisms. This discovery changed the
whole face of pathology and effected a
complete revolution in the practice of
19th-century pioneer in this field, regarded
by some as founder of the parasitic
theory of infection, was Agostino Bassi
of Italy, who showed that a disease of
silkworms was caused by a fungus that
could be destroyed by chemical agents.
The main credit for establishing the science
of bacteriology must be accorded to the
French chemist Louis Pasteur. It was
Pasteur who, by a brilliant series of
experiments, proved that the fermentation
of wine and the souring of milk are caused
by living microorganisms. His work led to
the pasteurization of milk and solved
problems of agriculture and industry as well
as those of animal and human diseases. He
successfully employed inoculations to
prevent anthrax in sheep and cattle,
chicken cholera in fowl, and finally rabies in
humans and dogs.
Louis Pasteur and his
device for germ
Louis Pasteur studied
alcoholic fermentation and
lactic fermentation in sour milk;
he found that both
fermentations were caused by
minute organisms, and were
hastened by exposure to the
air. He proved that the
microscopic organisms were
not spontaneously generated,
but were introduced by air.
From Pasteur, Joseph Lister derived the
concepts that enabled him to introduce
the antiseptic principle into surgery. In
1865 Lister, a professor of surgery at
Glasgow University, began placing an
antiseptic barrier of carbolic acid between
the wound and the germ-containing
atmosphere. Infections and deaths fell
dramatically, and his pioneering work led
to more refined techniques of sterilizing
the surgical environment.
Joseph Lister
Joseph Lister saw that sepsis was the
principal obstacle to any great
advantage in surgery. Finally, noting
that closed wounds did not suppurate
while open ones exposed to the air
did, he concluded that suppuration
was in some manner due to contact
with the air, but that the air alone did
not cause suppuration.
Another pioneer in bacteriology was the German
physician Robert Koch, who showed how
bacteria could be cultivated, isolated, and
examined in the laboratory. A meticulous
investigator, Koch discovered the organisms of
tuberculosis, in 1882, and cholera, in 1883. By
the end of the century many other diseaseproducing microorganisms had been identified.
Robert Koch (1843—1910)
In 1882 Koch discovered tuberculosis
bacilli. Due to his discovery Koch
became known all over the world. In
1884 Koch published his book on
cholera. This book included the
investigations of his research work
carried out during the cholera epidemic
in Egypt and India. From the intestines
of the men with cholera Koch isolated a
small comma-shaped bacterium. He
determined that these bacteria spread
through drinking water.
Crawford Long, American physician, is
traditionally considered the first to have
used ether as an anesthetic in surgery. He
observed that persons injured in “ether
frolics” (social gatherings of people who
were in a playful state of ether-induced
intoxication) seemed to suffer no pain, and
in 1842 he painlessly removed a tumour
from the neck of a patient, to whom he had
administered ether.
Gardner Colton, American anesthetist and
inventor, was among the first to utilize the
anesthetic properties of nitrous oxide in medical
practice. After a dentist suggested the use of the
gas as an anesthetic, Colton safely used it in
extracting thousands of teeth. As he was
studying medicine in New York (without taking a
degree), Colton learned that the inhalation of
nitrous oxide, or laughing gas, produced
exhilaration. After a public demonstration of its
effects in New York City proved to be a financial
success, he began a lecture tour of other cities.
Horace Wells, American dentist, was a
pioneer in the use of surgical anesthesia.
While practicing in Hartford, Connecticut, in
1844, Wells noted the pain-killing
properties of nitrous oxide (“laughing gas”)
during a laughing gas road show and there
after used it in performing painless dental
operations. He was allowed to demonstrate
the method at the Massachusetts General
Hospital in January 1845, but when the
patient proved unresponsive to the gas,
Wells was exposed to ridicule.
It was William Thomas Morton who, in October,
16, 1846, at Massachusetts General Hospital, in
Boston, first demonstrated before a gathering of
physicians the use of ether as a general
anaesthetic. He is credited with gaining the
medical world's acceptance of surgical anesthesia.
The news quickly reached Europe, and general
anaesthesia soon became prevalent in surgery.
At Edinburgh, the professor of midwifery, James
Young Simpson, had been experimenting upon
himself and his assistants, inhaling various vapours
with the object of discovering an effective anaesthetic.
He was the first to use chloroform in obstetrics and the
first in Britain to use ether. In November 1847
chloroform was tried with complete success, and soon
it was preferred to ether and became the anaesthetic
of choice.
Infectious diseases and chemotherapy
In the years following the turn of the
century, ongoing research
concentrated on the nature of
infectious diseases and their means
of transmission. Increasing numbers
of pathogenic organisms were
discovered and classified. Some,
such as the rickettsias, which cause
diseases like typhus, were smaller
than bacteria; some were larger, such
as the protozoans that engender
malaria and other tropical diseases.
The smallest to be identified were the
viruses, producers of many diseases,
among them mumps, measles,
German measles, and poliomyelitis;
and in 1910 Peyton Rous showed that
a virus could also cause a malignant
tumour, a sarcoma in chickens.
Paul Ehrlich (1854-1915)
Sulfonamide drugs
In 1932 the German
Domagk announced that
the red dye Prontosil is
streptococcal infections in
mice and humans.
Gerhard Domagk (1895 –1964)
A dramatic episode in medical history
occurred in 1928, when Alexander
Fleming noticed the inhibitory action of a
stray mold on a plate culture of
staphylococcus bacteria in his laboratory
at St. Mary's Hospital, London. Many
other bacteriologists must have made the
observation, but none had realized the
possible implications. The mold was a
strain of Penicillium, which gave its name
to the now-famous drug penicillin. In spite
of his conviction that penicillin was a
potent antibacterial agent, Fleming was
unable to carry his work to fruition, mainly
because biochemists at the time were
unable to isolate it in sufficient quantities
or in a sufficiently pure form to allow its
use on patients.
Alexander Fleming (1881-1955)
Antituberculous drugs
In 1944, Selman Waksman, Albert Schatz,
and Elizabeth Bugie announced the
discovery of streptomycin from cultures of
a soil organism, Streptomyces griseus. Іt
was active against tuberculosis.
Subsequent clinical trials amply confirmed
this claim.
Selman Waksman
Albert Schatz
Development of Immunology
Dramatic though they undoubtedly were, the advances in
chemotherapy still left one important area vulnerable,
that of the viruses. It was in bringing viruses under
control that advances in immunology played such a
striking part. One of the paradoxes of medicine is that the
first large-scale immunization against a viral disease was
instituted and established long before viruses were
discovered. When Edward Jenner introduced vaccination
against the virus that causes smallpox, the identification
of viruses was still 100 years in the future. It took almost
another half century to discover an effective method of
producing antiviral vaccines that were both safe and
Edward Jenner
Antibacterial vaccination
 In 1897 the English bacteriologist Almroth
Wright introduced a vaccine prepared from
killed typhoid bacilli as a preventive of
typhoid. Preliminary trials in the Indian
army produced excellent results, and
typhoid vaccination was adopted for the
Almroth Wright
The other great hazard of war that was brought
under control in World War I was tetanus. This
was achieved by the prophylactic injection of
tetanus antitoxin into all wounded men. The
serum was originally prepared by the
bacteriologists Emil von Behring and
Shibasaburo Kitasato in 1890–92, and the
results of this first large-scale trial amply
confirmed its efficacy.
Emil von Behring
Shibasaburo Kitasato
Аs with tetanus antitoxin, came the preparation of diphtheria
antitoxin by Behring and Kitasato in 1890. As the antitoxin came
into general use for the treatment of cases, the death rate began
to decline. There was no significant fall in the number of cases,
however, until a toxin–antitoxin mixture, introduced by Behring in
1913, was used to immunize children. A more effective toxoid
was introduced by the French bacteriologist Gaston Ramon in
1923,and with subsequent improvements this became one of
the most effective vaccines available in medicine. Where mass
immunization of children with the toxoid was practiced, as in the
United States and Canada beginning in the late 1930s and in
England and Wales in the early 1940s, cases of diphtheria and
deaths from the disease became almost nonexistent. In England
and Wales, for instance, the number of deaths fell from an
annual average of 1.830 in 1940–44 to zero in 1969.
Immunization against viral diseases
 The first of the viral vaccines to
result from these advances was
for yellow fever, developed by the
microbiologist Max Theiler in the
late 1930s. About 1945 the first
relatively effective vaccine was
produced for influenza; in 1954
the American physician Jonas E.
Salk introduced a vaccine for
poliomyelitis; and in 1960 an oral
poliomyelitis vaccine, developed
by the virologist Albert B. Sabin,
came into wide use.
Max Theiler
Jonas E. Salk
During the first two decades of the century,
steady progress was made in the isolation,
identification, and study of the active principles of
the various endocrine glands, but the
outstanding event of the early years was the
discovery of insulin by Frederick Banting,
Charles H. Best, and J.J.R. Macleodin in 1921.
Almost overnight the lot of the diabetic patient
changed from a sentence of almost certain death
to a prospect not only of survival, but of a long
and healthy life.
Frederick Banting
Charles H. Best
J.J.R. Macleodin
Another major advance in endocrinology
came from the Mayo Clinic, in
Rochester, Minn. In 1949 Philip S.Hench
and his colleagues announced that a
substance isolated from the cortex of the
adrenal gland had a dramatic effect
upon rheumatoid arthritis. This was
compound E, or cortisone, as it came to
be known, which had been isolated by
Edward C. Kendall in 1935. Cortisone
and its many derivatives proved to be
potent as anti-inflammatory agents.
Although it is not a cure for rheumatoid
arthritis, as a temporary measure
cortisone can often control the acute
exacerbation caused by the disease and
can provide relief in other conditions.
Philip S.Hench
Edward C. Kendall
In the field of nutrition, the outstanding advance of the
20th century was the discovery and the appreciation of
the importance to health of the “accessory food factors”,
or vitamins. Various workers had shown that animals did
not thrive on a synthetic diet containing all the correct
amounts of protein, fat, and carbohydrate; they even
suggested that there must be some unknown ingredients
in natural food that were essential for growth and the
maintenance of health. But little progress was made in
this field until the classical experiments of the English
biologist F. Gowland Hopkins were published in 1912.
These were so conclusive that there could be no doubt
that what he termed “accessory substances” were
essential for health and growth.
F. Gowland Hopkins
Surgery in the 20th century
Abdominal surgery
 By the start of the 20th century,
abdominal surgery, which provided
the general surgeon with the bulk
of his work, had grown beyond
infancy, thanks largely to Billroth.
In 1881 he had performed the first
successful removal of part of the
stomach for cancer. His next two
cases were failures, and he was
stoned in the streets of Vienna.
Though probably the most demanding of all the
surgical specialties, neurosurgery was
nevertheless one of the first to emerge. The
techniques and principles of general surgery were
inadequate for work in such a delicate field. William
Macewen, a Scottish general surgeon of
outstanding versatility, and Victor Alexander Haden
Horsley, the first British neurosurgeon,showed that
the surgeon had much to offer in the treatment of
disease of the brain and spinal cord.
William Macewen
Victor Alexander Haden Horsley
In 1895 a development at the University of
Würzburg had far-reaching effects on
medicine and surgery, opening up an
entirely fresh field of the diagnosis and study
of disease and leading to a new form of
treatment, radiation therapy. This was the
discovery of X-rays by Wilhelm Conrad
Röntgen, a professor of physics. Within
months of the discovery there was an
extensive literature on the subject: Robert
Jones, a British surgeon, had localized a
bullet in a boy's wrist before operating;
stones in the urinary bladder and gallbladder
had been demonstrated; and fractures had
been displayed.
Wilhelm Conrad Röntgen
Robert Jones
Between the world wars
The years between the two world
wars may conveniently be regarded
consolidated its position. A surprising
number of surgical firsts and an
amazing amount of fundamental
research had been achieved even in
the late 19-th century, but the
knowledge and experience could not
be converted to practical use
because the human body could not
survive the onslaught. In the years
between World Wars I and II, it was
realized that physiology — in its
widest sense, including biochemistry
and fluid and electrolyte balance —
was of major importance along with
anatomy, pathology, and surgical
Anesthesia and surgery
The strides taken in anesthesia from the 1920s onward
allowed surgeons much more freedom. Rectal anesthesia
had never proved satisfactory, and the first improvement on
the combination of nitrous oxide, oxygen, and ether was the
introduction of the general anesthetic cyclopropane by Ralph
Waters of Madison, in 1933. Soon afterward, intravenous
anesthesia was introduced; John Lundy of the Mayo Clinic
brought to a climax a long series of trials by many workers
when he used Pentothal (thiopental sodium, a barbiturate) to
put a patient peacefully to sleep. Then, in 1942, Harold
Griffith and G. Enid Johnson, of Montreal, produced
muscular paralysis by the injection of a purified preparation
of curare. This was harmless since, by then, the anesthetist
was able to control the patient's respiration.
Ralph Waters
John Lundy
Harold Griffith
Heart surgery
The attitude of the medical profession toward heart
surgery was for long overshadowed by doubt and
disbelief. Wounds of the heart could be sutured (first
done successfully by Ludwig Rehn, of Frankfurt am Main,
in 1896); the pericardial cavity — the cavity formed by
the sac enclosing the heart — could be drained in
purulent infections (as had been done by Larrey in 1824);
and the pericardium could be partially excised for
constrictive pericarditis when it was inflamed and
constricted the movement of the heart (this operation
was performed by Rehn and Sauerbruch in 1913). But
little beyond these procedures found acceptance.
Ludwig Rehn
Organ transplantation
In 1967 surgery arrived at a climax that made the whole
world aware of its medicosurgical responsibilities when
the South African surgeon Christian Barnard transplanted
the first human heart. Reaction, both medical and lay,
contained more than an element of hysteria. Yet, in 1964,
James Hardy, of the University of Mississippi, had
transplanted a chimpanzee's heart into a man. Research
had been remorselessly leading up to just such an
operation ever since Charles Guthrie and Alexis Carrel,
at the University of Chicago, perfected the suturing of
blood vessels in 1905 and then carried out experiments
in the transplantation of many organs, including the
Christian Barnard
Charles Guthrie
Alexis Carrel
Modern Ukrainian
The Ukrainian National Museum of
Mykola Amosov
Mykola Amosov was a Ukrainian doctor, heart
surgeon, inventor, enthusiast, known for his inventions
of several surgical procedures for treating
heart defects.
In 1955 he was the first in Ukraine who began
treatment for heart diseases surgically. In 1958, he was
one of the first in the Soviet Union to introduce into the
practice the method of artificial blood circulation (in
1963). Amosov was first in the Soviet Union to perform
the mitral valve replacement, and in 1965 for the first
time in the world he created and introduced into
practice the antithrombotic heart valves prosthethesis.
Amosov elaborated a number of new methods of
surgical treatment of heart lesions, the original model of
heart-lung machine.
His work on the surgical treatment of heart diseases
won a State Prize of Ukraine (1988) gold medals and
Silver Medal (1978) of the Exhibition of Economic
Achievements of the USSR.
The clinic established by Amosov, produced about 7000
lung resections, more than 95000 operations for heart
diseases, including about 36000 operations with
extracorporeal blood circulation.
In 1983 Amosov’s cardiac surgery clinic was reorganized
in Kiev Research Institute of Cardiovascular Surgery and
in the Ukrainian Republican cardiovascular surgical
center. Each year, the institute fulfilled about 3000 heart
operations, including over 1500 - with extracorporeal
blood circulation. Amosov was the first director of the
Institute, and since 1988 - Honorary Director of the
In 1955, Amosov created and headed the first in the
USSR Chair of Thoracic Surgery for the postgraduate
studies and later the Chair of Anesthesiology. These
Chairs have prepared more than 700 specialists for
Ukraine and other republics.
Volodymyr Petrovych Filatov
Volodymyr Filatov was a Ukrainian
ophthalmologist and surgeon best known for
his development of tissue therapy. He
introduced the tube flap grafting method,
corneal transplantation and preservation of
grafts from cadaver eyes. He founded The
Filatov Institute of Eye Diseases & Tissue
Therapy in Odessa. Filatov is also credited for
restoring Vasily Zaytsev’s sight when he
suffered an injury to his eyes from a mortar
attack during Battle of Stalingrad.
First corneal transplantation was attempted by
Filatov on 28 of February 1912, but the graft
grew opaque. After numerous attempts over
the course of many years, Filatov achieved a
successful transplantation of cornea from a
diseased person on 6 of May 1931.
Thank you for your