Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SPSS meets SPM All about Analysis of Variance • Introduction and definition of terms • One-way between-subject ANOVA: An example • One-way repeated measurement ANOVA • Two-way repeated measurement ANOVA: • Pooled and partitioned errors • How to specify appropriate contrasts to test main effects and interactions SPSS meets SPM Analysis of Variance Single Measures Repeated Measures Two-sample t-test Paired-sample-t-test ANOVA between-subject ANOVA F-test Repeated ANOVA within-subject ANOVA F-test Factors Levels K1 x K2 ANOVA Two Factors with K1 levels of one factor and K2 level of the second factor 2 x 2 repeated measurement ANOVA Two-way ANOVA 2 x 2 ANOVA Factor A Factor A Level 1 Factor B Level 2 Level 1 Level 2 Group 1 Group 2 Group 3 Group 4 Level 1 Level 2 Level 1 Subj. 1….12 Subj. 1….12 Level 2 Subj. 1….12 Subj. 1….12 Factor B Mixed Design Factor A Within-subject Factor Drug Factor B Between-subject Factor Placebo Patient Subj. 1…12 Subj. 1…12 Control Subj. 13...24 Subj. 13...24 Imaging Designs 2 x 2 repeated measurement ANOVA 2 x 2 ANOVA Factor A Explicit Group 1 Group 2 Group 3 Group 4 Factor B Implicit Factor A Neutral Main Effect B Factor B Fearful Fearful Neutral Implicit Subj. 1….12 Subj. 1….12 Explicit Subj. 1….12 Subj. 1….12 Main Effect A Interaction A X B 3 x 2 ANOVA Fearful Neutral Fearful Happy Implicit Neutral Explicit Implicit Contrasts Explicit One-way between-subject ANOVA An individual score is specified by X ij j ij Grand mean j j Treatment effect ij X ij j Residual error General Principle of ANOVA FULL MODEL X ij j ij REDUCED MODEL X ij ij Data represent a random variation around the grand mean Is the full model a significantly better model then the reduced model? Partitions of Sums of Squares Total Variation (SStotal) Treatment effect (SStreat) F Error (SSerror) SS treat / DFtreat SS error / DFerror SStotal SStreat SSerror DFtotal DFtreat DFerror One-way ANOVA between subjects 1st levels betas from one voxel in amygdala 1. G A i G i n* p 10 15 35 20 4 20 ____________________________________ 4-different drug treatments (Factor A with p levels) ____________________________________ 1 2 3 4 ____________________________________ 2 3 6 5 1 4 8 5 3 3 7 5 3 5 4 3 1 0 10 2 _____________________________________ Sums(Ai) 10 15 35 20 _____________________________________ Means(Ai) 2 3 7 4 2. SStot (x i G) 2 m df tot n * p 1 3. (2 4) 2 (1 4) 2 .. SStreat n * ( Ai G ) 2 i df treat p 1 5 * (2 4) 2 5 * (3 4) 2 .. 4. SS error i (x mi Ai ) 2 m df error p * (n 1) _____________________________________ One factor with p levels; i = 1…4 M subjects with n subjects per level Number of total observations = 20 mi (2 2) 2 (1 2) 2 .. 5. SS treat / DFtreat F SS error / DFerror One way ANOVA Do the drug treatment affect differently mean activation in the amygdala ? ____________________________________ Drug treatment (Factor A with p levels) ____________________________________ 1 2 3 4 ____________________________________ 2 3 6 5 1 4 8 5 3 3 7 5 3 5 4 3 1 0 10 2 Dependent variable = 1st level betas extracted from the amygdala Multiple Regression Do the drug treatments relate to the mean activation in the amygdala? 1st level betas Drug treatments 2 1 3 3 1 3 4 3 5 0 6 8 7 4 10 5 5 5 3 2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 y = aX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + b One way ANOVA Multiple Regression Do the drug treatment affect differently mean activation in the amygdala ? ____________________________________ Drug treatment (Factor A with p levels) ____________________________________ 1 2 3 4 ____________________________________ 2 3 6 5 1 4 8 5 3 3 7 5 3 5 4 3 1 0 10 2 Dependent variable = 1st level betas extracted from the amygdala Do the drug treatments relate to the mean activation in the amygdala? 1st level betas 2 1 3 3 1 3 4 3 5 0 6 8 7 4 10 5 5 5 3 2 y Drug treatments 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 x1 x2 x3 x4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 One way ANOVA Multiple Regression Do the drug treatment affect differently mean activation in the amygdala ? ____________________________________ Drug treatment (Factor A with p levels) ____________________________________ 1 2 3 4 ____________________________________ 2 3 6 5 1 4 8 5 3 3 7 5 3 5 4 3 1 0 10 2 Dependent variable = 1st level betas extracted from the amygdala Do the drug treatments relate to the mean activation in the amygdala? 1st level betas 2 1 3 3 1 3 4 3 5 0 6 8 7 4 10 5 5 5 3 2 Y Drug treatments 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 b1x1+b2x2+b3x3+b4x4 + b0 Multiple Regression One way ANOVA Do the drug treatment affect differently mean activation in the amygdala ? Do the drug treatments relate to the mean activation in the amygdala? ____________________________________ Teaching Methods (Factor A with p levels) ____________________________________ 1 2 3 4 ____________________________________ 2 3 6 5 1 4 8 5 3 3 7 5 3 5 4 3 1 0 10 2 y= Dependent variable = reading score X ij j ij 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e11 e21 e31 e41 e51 e12 b1 b2 * b3 b4 b0 + . . . . . . . . . . . . 44 54 e e y b1 X 1 b 2 X 2 b3 X 3 b 4 X 4 b0 e b 0; j bj Repeated ANOVA Single Measures Two-sample t-test ANOVA between-subject ANOVA F-test Drug 1 Drug 2 Drug 3 Placebo Group 1 Group2 Group3 Group4 Repeated Measures Paired-sample-t-test Repeated ANOVA within-subject ANOVA F-test Drug 1 Drug 2 Drug 3 Placebo Subj.1 Subj. 2 Subj. 3 …. Subj.1 Subj. 2 Subj. 3 …. Subj.1 Subj. 2 Subj. 3 …. Subj.1 Subj. 2 Subj. 3 ….. Assumptions Assumptions • Homogeneity of Variance • Homogeneity of Variance • Normality • Homogeneity of Correlations • Independence of observations • Normality One-way between-subject One-way within-subject ANOVA ANOVA An individual score is specified by X ij j ij Grand mean j j Treatment effect ij X ij j Residual error An individual score is specified by X ij i j ij Grand mean i Subject effect effect j Treatment (within-subject effect) ij Residual error Partitions of Sums of Squares Total Variation (SStotal) Treatment effect (SStreat) Error (SSerror) Total Variation (SStotal) Within subj. (SSwithin) Between subj (SSbetween) Subject effects Treatment effect (SStreat) Residual (SSres) Subj. x Treat & Error SS treat / DFtreat F SS error / DFerror SStotal SStreat SSerror DFtotal DFtreat DFerror SStreat / DFtreat F SS residual / DFerror SStotal SSbetween SStreat SSresidual DFtotal DFbetween DFtreatment DFresidual Between Subjects y= 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 Within subjects 1 2 3 4 Drug 1 Drug 2 Drug3 Placebo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e11 e21 e31 e41 e51 e12 b1 b2 * b3 + b4 b0 . . . . . . . . . . . . 44 54 y= e e 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e11 e21 e31 e41 e51 e12 b1 b2 * b3 b4 b0 + . . . . . . . . . . . . 44 54 e e + 10000 01000 00100 00010 00001 10000 01000 00100 00010 00001 10000 01000 00100 00010 00001 10000 01000 00100 00010 00001 y b1 X 1 b 2 X 2 b3 X 3 b 4 X 4 b0 e y b1 X 1 b 2 X 2 b3 X 3 b 4 X 4 b0 e X ij j ij 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j j X ij i j ij 1 2 3 4 5 Between Subjects 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 Within subjects 1 2 3 4 Drug 1 Drug 2 Drug3 Placebo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y b1 X 1 b 2 X 2 b3 X 3 b 4 X 4 b0 e X ij j ij 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y b1 X 1 b 2 X 2 b3 X 3 b 4 X 4 b0 e j j X ij i j ij 2 x 2 Repeated Measurement ANOVA Factor A Factor B Level 1 Level 2 Level 1 Subj. 1….12 Subj. 1….12 Level 2 Subj. 1….12 Subj. 1….12 Pooled Error X ijk i A j B k AB jk Interaction between effect and subject Partitioned Error X ijk i A j B k AB jk ijk A ij B ik AB ijk Within-Subjects Two-Way ANOVA 1 2 3 4 Fear-implicit neutral-implicit fear-explicit neutral-explicit 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y b1 X 1 b 2 X 2 b3 X 3 b 4 X 4 b0 e X ij i j ij 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Repeated Measurement ANOVA in SPM Pooled errors One way ANOVA = 1st level betas 2nd level + subjects effects Partitioned errors Two way ANOVA = 1st level differential effects between levels of a factors for main effects differences of differential effects for interactions 2nd level (T-test for 2x2 ANOVA F-test for 3x3 ANOVA) What contrast to take from 1st level? Two way ANOVA (2*2) with repeated measured Factor A Factor B Fearful Neutral Implicit Explicit Fear/ implicit Fear/ explicit Neutral/ implicit Neutral/ explicit What contrast to take from 1st level? Two way ANOVA (3*3) with repeated measured Factor A semantic Factor B Picture Words Sounds perception Imagery