Download Intermolecular interactions

Document related concepts

Electrostatics wikipedia , lookup

Photon polarization wikipedia , lookup

Gibbs free energy wikipedia , lookup

Potential energy wikipedia , lookup

Internal energy wikipedia , lookup

Conservation of energy wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Density of states wikipedia , lookup

Nuclear structure wikipedia , lookup

Cation–pi interaction wikipedia , lookup

Transcript
Intermolecular interactions
János Ángyán
Équipe Modélisaton Quantique et Cristallographique, LCM3B
– 2008 –
J. Ángyán (EMQC)
IMF
1 / 201
Part I
Introduction
J. Ángyán (EMQC)
IMF
2 / 201
What are intermolecular forces?
N2 crystal
why are the N2 molecules arranged this
way?
what are the optimal intermolecular
distances?
what is the physical origin of the
interactions that govern the structure?
Intermolecular interactions
fragments (subsystems) are well-defined and preserve their identity
usually between closed shell molecules, ions or atoms
much weaker than chemical bonding
long range
J. Ángyán (EMQC)
IMF
3 / 201
Why are intermolecular forces interesting?
Intermolecular forces play an important rôle in numerous fields
Deviations of gases from ideal behaviour (pressure, viscosity, diffusion, thermal
conductivity).
Existence of condensed phases matter
Properties of solids and liquids e.g. melting and boiling points.
Organization of matter solids, crystal structures
Polymorphism requires a very accurate knowledge of intermolecular forces.
Liquid structure (pair distribution function, etc.)
Reaction mechanisms (steric effects,
Organization of soft matter, biopolymers.
Heterogeneous catalysis
Formation of surface monolayers, micelles and membranes,
Transport of ions and molecules across biological membranes
Atmospheric chemistry, etc...
J. Ángyán (EMQC)
IMF
4 / 201
Gecko feet adhesion by van der Waals forces
Autumn et al. Proc. Natl. Acad. Sci. 99 (2002) 122.
J. Ángyán (EMQC)
IMF
5 / 201
Intermolecular potential
Ar2 dimer
Interaction-dependent contribution,
U (R),the interaction energy or
intermolecular pair-potential
U (R) = Etot (R) − Etot (∞)
= Etot (R) − EA − EB
The intermolecular pair-potential is the
work to bring together the two systems
from infinity to the distance R, against
the intermolecular force, F (R)
Z ∞
U (R) =
F (r)dr
At infinitely large distance, there is no
interaction: the energy is the sum of the
energy of isolated atoms
Etot (∞) = EA + EB
R
where
At an arbitrary, finite R distance, the
total energy
F (R) = −
Etot (R) = EA + EB + U (R)
J. Ángyán (EMQC)
IMF
dU
dEtot
=−
dR
dR
6 / 201
Potential and force
U(R)
σ is the hard core radius
σ
Rm
ε is the well depth
−ε
repulsive for R < Rm
F(R)
attractive for R > Rm
Rm
for σ < R < Rm negative, but
repulsive
R
Intermolecular energy can negative, but the interaction is repulsive (F>0).
J. Ángyán (EMQC)
IMF
7 / 201
General intermolecular potential
For polyatomic subsystems the
intermolecular interaction energy
U (R, ω; q A , q B )
depends on the relative position
and orientation {R, ω} and on
the internal coordinates {q A , q B }
R: intermolecular vector (in polar
coordinates)
ω: relative Euler-angles
Even if we neglect the intramolecular degrees of freedom, {q A , q B },
the intermolecular PES (potential energy surface) is six-dimensional.
J. Ángyán (EMQC)
IMF
8 / 201
Cluster expansion of the interaction energy
The interaction energy can be decomposed to the sum of one-, two-, three-, etc. body
contributions
X
1X
1 X
1 X
UN =
Ui +
Uij +
Uijk +
Uijkl + . . .
2 ij
3!
4!
i
ijk
ijkl
one-body: geometrical deformation of the monomers
two-body: dominating term (additivity)
three-body, four-body, etc. (non-additivity)
Effective (system-dependent) pair-potential
UN =
X
Ui +
i
1 X eff
Uij (N )
2 ij
may be quite different from the pure pair-potential.
Attention: an effective pair-potential, usually obtained by fitting condensed-phase
experimental data, is usually not valid for simple binary complexes.
J. Ángyán (EMQC)
IMF
9 / 201
U(R)
Interaction ranges
Range
Subsystems
Overlap
Description
short
intermediate long
easy to identify
difficult quite easy
strong weak
no
SM
SM/PT
PT
R
J. Ángyán (EMQC)
IMF
10 / 201
Calculation of intermolecular interaction energy
ĤAB = ĤA + ĤA + λV̂AB
Supermolecule approach
Perturbation theory
U = ∆E =
U = ∆E = E(AB) − E(A) − E(B)
∞
X
λn ∆E (n)
n=1
difference of the total energies (large
numbers)
directly, from the power series expansion
in the strength of interaction
technically very simple
leads directly to the interaction
energy
does not depend on the intensity of
the interaction
based on the monomer
wavefunction/properties
difficult to interpret in terms of the
monomer properties
easy to interpret (physical insight,
decomposition)
energy components may have large
errors with respect to the
interaction energy
provides basis of approximate
analytical energy expressions
systematic errors (BSSE)
is the expansion convergent?
J. Ángyán (EMQC)
IMF
11 / 201
Water molecule density
Electron density isosurface at 0.05 e/Å3
J. Ángyán (EMQC)
IMF
12 / 201
Water molecule electrostatic potential
Electrostatic potential isosurfaces at ±0.1 e/Å3
J. Ángyán (EMQC)
IMF
13 / 201
Change of electron density under field
Fz =0.028 a.u.; electron density isosurface at ±0.05 e/Å3
J. Ángyán (EMQC)
IMF
14 / 201
Change of electron density under field
Fz = 0.028 a.u.; deformation density isosurfaces at ±0.001 e/Å3
J. Ángyán (EMQC)
IMF
15 / 201
Change of electrostatic potential under field
Fz = 0.028 a.u.; potential difference isosurface at ±0.01 e/Å3
J. Ángyán (EMQC)
IMF
16 / 201
Long-range correlation effect on the density
He dimer: attractive London dispersion forces are due to tiny
charge density rearrangements, predicted by Feynmann in 1939.
J. Ángyán (EMQC)
IMF
17 / 201
Short range antisymmetry effect on the density
He dimer deformation density δ%(r) = %He2 (r) − %Hea (r) − %Heb (r)
At short distances electrons density is depleted between the two closed shell atom
consequence of the Pauli principle.
J. Ángyán (EMQC)
IMF
18 / 201
Main contributions to the interaction energy
Contribution
Long-range (U ∼ R−n )
Electrostatic
Induction
Dispersion
Short-range (U ∼ e−αR )
Penetration
Overlap repulsion
Damping
Charge transfer
J. Ángyán (EMQC)
Pairwise
Additive?
Sign
Comment
Yes
No
approx.
±
−
−
Strong orientation dependence
Strongly non-additive
Always present
Yes
No
approx.
No
−
+
+
−
Can be repulsive at very short range
Dominates at very short range
Antisym. effect on induction and disp.
Donor-acceptor interaction
IMF
19 / 201
Part II
Experimental sources
J. Ángyán (EMQC)
IMF
20 / 201
Experimental sources of intermolecular forces
crystal structure analysis
thermodynamical properties: heat of vaporization (Trouton’s rule)
crystal structures
ionic crystals
rare gas solids
physico-chemical properties: bulk modulus, phonon spectrum, etc.
virial coefficients of real gases
viscosity, thermal conductivity (collision integrals)
spectroscopy: VRT (vibration-rotation tunneling)
J. Ángyán (EMQC)
IMF
21 / 201
Theory vs. experiments
EXPERIMENT
{Dexp}
{Dtheor}
model
model
Uexp
Utheor
QUANTUM CHEMISTRY
J. Ángyán (EMQC)
IMF
22 / 201
Crystal structure analysis
van de Waals radii (Pauling, Bondi)
anisotropy of the interactions
properties of the hydrogen bond
J. Ángyán (EMQC)
IMF
23 / 201
Interacting atoms are often aspheric
Pauling and Bondi compiled nonbonded interatomic distances from crystal structures:
tables of spherical van der Waals radii.
Atom
F
Cl
Br
I
N
O
S
Se
Bondi
1.47
1.76
1.85
1.98
1.70
1.50
1.74
2.00
rmax
1.38
1.78
1.84
2.13
1.60
1.54
2.03
2.15
rmin
1.30
1.58
1.54
1.76
1.60
1.54
1.60
1.70
Bondi’s vdW radii and major and minor
anisotropic radii proposed by Nyburg and
Faerman.
Nyburg and Faerman, Acta Cryst. B. 41 (1985) 274
J. Ángyán (EMQC)
IMF
24 / 201
Anisotropic Cl· · · Cl contacts
S.L. Price et al. , J.A.C.S. 116 (1994) 4910
J. Ángyán (EMQC)
IMF
25 / 201
Trouton’s rule
Empirical relationship between enthalpy of vaporization, ∆Hvap and boiling point,
Tb at atmospheric pressure
∆Hvap ≈ 10RTb = 85J K−1 mol−1
Can be explained by the fact that the change in Gibbs free energy is zero at the
boiling point, Tb ,
∆Gvap = 0
∆Hvap = Tb ∆Svap
Rough estimate of the entropy change by the liquid/gas volume variation:
∆Svap = R ln (Vg /Vl ) ≈ R ln 1000 ≈ 7R ≈ 57J K−1 mol−1
The remaining contribution of 3R can be attributed to liquid structure.
J. Ángyán (EMQC)
IMF
26 / 201
Well depths from Trouton’s rule
The latent heat of evaporation can be approximated by the energy required to separate
the liquid to its constituents is ε (zp energy neglected). The total energy for N
molecules, each having n neighbours is
∆Hvap ≈ 10RTb ≈
1
NA n ε
2
An estimation of of the well-depth, ε is given in terms of Tb
ε/kB ≈ 20Tb /n
Table: Pair potential well-depths from Trouton’s rule
He
Ar
Xe
CH4
H2 O
J. Ángyán (EMQC)
Tb /K
4.2
87.0
166.0
111.5
373.2
n
12
12
12
12
4
(20Tb /n)/K
7
145
277
186
1866
IMF
(ε/kB )/K
11
142
281
180-300
≈2400
ε/kJ mol−1
0.09
1.18
2.34
1.5-2.50
≈20
27 / 201
Ionic crystals
NaCl crystallizes in fcc lattice
lattice parameter a = 5.64Å
ions are in (0,0,0) and ( 12 , 12 , 12 )
lattice energy Ulatt = −764.4 kJ/mol
Cohesion energy is the sum of the Coulomb (Madelung) and repulsion energy:
Ucoh = UC + UR
where UC is a lattice sum of 1/r interactions, UR is approximated by the Born-Mayer
potential.
J. Ángyán (EMQC)
IMF
28 / 201
Ionic crystals – Born-Mayer potential
Born-Mayer potential:
UC = Q2
X
(±)j rj−1
UR =
j
X
Be−ri /ρ
i
The lattice sum (Madelung energy) is conditionally convergent, so special techniques
(e.g. Ewald summation) are needed to evaluate them. For a NaCl lattice, the energy can
be expressed using the Madelung constant, α = 1.7476,
UC = −Q2
2 · 1.7476
2α
= −1389.9 ×
kJ/mol = −861.3kJ/mol
a
5.64
The repulsion energy is short-range, therefore it is sufficient to sum over the 6
first-neighbours:
X −r /ρ
UR =
Be i = 6Be−a/2ρ
i
J. Ángyán (EMQC)
IMF
29 / 201
Ionic crystals – parameters of the BM potential
The Born-Mayer potential has two unknown parameters, B and ρ.
Repulsion energy
exp
UR = Ucoh
− UC = −764.4 + 861.3 = 96.9kJ/mol
Condition of equilibrium in the minimum of the lattice energy
∂Ucoh
6B −a/2ρ
2α
Uc
UR
= −Q2 2 −
e
=−
−
=0
∂a
a
2ρ
a
2ρ
Effective "ion radius" is obtained from the repulsion and Madelung energies
ρ=−
1 UR
· a = 0.3164
2 UC
The B parameter of the Born-Mayer potential is
B=
J. Ángyán (EMQC)
UR
= 1.168 · 105 kJ/mol
6e−a/2ρ
IMF
30 / 201
Ionic crystals – check the potential
Second derivative of the cohesion energy
„ 2 «
∂ 2 Ucoh
∂
1 ∂UR
Q 2α
=
−
−
∂a2
∂a
a2
2ρ ∂a
1
2
= 2 UC + 2 UR
a
4ρ
The quality of this potential can be
checked by calculating the bulk modulus
K=V
∂ 2 Ucoh
∂V 2
where the volume of 1 mole NaCl is V =
NA a3 /4. The volume derivative can be
calculated as lattice-parameter derivative:
„
«−1
∂V
∂
∂
=
∂V
∂a
∂a
Theoretical bulk modulus
„
«
4
2UC
UR
K=
+
9NA a
a2
4ρ2
Bulk modulus for the NaCl structure
„
«2 2
NA a3
4
∂ Ucoh
K=
4
3NA a2
∂a2
Conversion to gigapascal
1 kJ/mol/Å3 = 1.667 GPa, i.e.
= 14.8016 kJ/mol/Å3
K theor = 24.57 GPa
2
=
4 ∂ Ucoh
9NA a ∂a2
J. Ángyán (EMQC)
K exp = 24 GPa
IMF
31 / 201
Rare gas crystal
Ar crystallizes in fcc lattice
lattice parameter a = 5.3109Å
ions are in (0,0,0) and ( 12 , 12 , 12 )
lattice energy Ulatt = −8.4732 kJ/mol
(after zpe correction)
Cohesion energy is the sum of pair potentials
Ucoh =
N X
ULJ (rij )
2 ij
where N = 4, number of atoms in the unit cell, and ULJ is the Lennard-Jones potential:
–
»“ ”
σ 12 “ σ ”6
ULJ (r) = 4ε
−
r
r
J. Ángyán (EMQC)
IMF
32 / 201
Rare gas crystals - lattice sums
Lattice sums can be calculated from
√ the number of neighbours at the multiples of the
nearest-neighbour distance d = a/ 2:
shell
r
mi
1
d
12
√2
2d
6
√3
3d
24
4
2d
12
√5
5d
24
i
fi · d
mi
General form of the lattice sums
„
«n shells
shells
“ σ ”n
“ σ ”n
X
X
σ
mi
= pn
=
mi fi−n
fi d
d
d
i
i
Lattice sum for the 6- and 12-potentials
Pi
p12 = Pi mi fi−12
p6 = i mi fi−6
1
12
12
5
12.13114
14.01839
fcc(∞)
12.13188
14.45392
hcp (∞)
12.13229
14.45489
Cohesion energy of the rare-gas lattice in terms of lattice sums
» “ ”
“ σ ”6 –
Nε
σ 12
Ucoh =
p12
− p6
2
d
d
J. Ángyán (EMQC)
IMF
33 / 201
Rare gas crystals - fit parameters
Stability condition
“ σ ”12 1
“ σ ”6 1
∂Ucoh
= −12p12
+ 6p6
=0
∂d
d
d
d
d
yields the σ parameter as a function of d, the nearest-neighbour distance
r
2p12
d= 6
· σ = 1.09026σ
p6
Lattice constant a = 1.54186σ.
Cohesion energy can be expressed in the function of ε.
" „
„
«2
«#
p6
p6
Nε
− p6
p12
Ucoh =
2
2p12
2p12
or:
Ucoh = −
J. Ángyán (EMQC)
N p26
ε = −2.1525 N ε
8 p12
IMF
34 / 201
Rare gas crystals - structure
a = 1.54186 σ
Ucoh = −2.1525 N ε
Lattice parameters (in Å) and cohesion energies (in µH) from "monomer" Lennard-Jones
potentials:
Ne
Ar
Kr
Xe
re
De
σ
acalc
Ucalc
aexp
Uexp
3.091
3.757
4.008
4.363
133.8
453.5
637.1
893.9
2.75
3.35
3.57
3.89
4.25
5.16
5.51
5.99
1152
3904
5485
7696
4.35
5.23
5.61
6.10
1002
3268
4502
6239
The cohesion energy error is increasing: large cooperative effects.
J. Ángyán (EMQC)
IMF
35 / 201
Deviations from the ideal gas
Equation of state for an ideal gas (noninteracting point masses)
P V = RT
where P is the pressure, V is molar volume, and R = 8.31J K −1 mol−1 is the gas
constant.
The standard molar volume V s
(1 atm, T=273.15 Ko ) of real
gases are different from the
ideal value (22414 cm3 ).
He: 22377 cm3
CH4 : 22396 cm3
NH3 : 22094 cm3
Considerable deviations can be
observed in the behaviour of
the compression factor,
V
.
z = PRT
J. Ángyán (EMQC)
IMF
36 / 201
van der Waals equation of state
The van der Waals equation of state accounts for these deviations by introducing two
empirical constants, a and b
„
«
a
P + 2 (V − b) = RT
V
excluded volume in a binary collision 34 πσ 3
b=
2
πNA σ 3
3
reduction of pressure due to intermolecular attraction: the number of binary
2
interactions is proportional to the square of the density, (a/V )
J. Ángyán (EMQC)
IMF
37 / 201
van der Waals equation of state
Rearrange as
V
a
PV
=
−
RT
V −b
RT V
expanded in the reciprocal volume
b − a/RT
b2
b3
PV
=1+
+ 2 + 3
RT
V
V
V
repulsive interactions raise the pressure
attractive forces reduce the pressure
at low T attraction (a), at high T or high pressure repulsion (b) dominates
the constants a and b can be obtained from critical parameters Pc , Vc and Tc , where
(∂P/∂V )T and ∂ 2 P/∂V 2 )T are both zero:
a=
J. Ángyán (EMQC)
9
RTc Vc = 3Pc Vc2
8
IMF
b=
1
Vc
3
38 / 201
Virial equation of state
Virial equation of state – power series of (1/V )
z=
B4
PV
B2
B3
=1+
+ 2 + 3 + ...
RT
V
V
V
where the second virial coefficient depends on the pair interactions
Z
B2 (T ) = −2πN
∞`
´
e−u(R)/kT − 1 R2 dR
0
The pair potential u(R) can be obtained by "inversion": mapping measured B2 (T )
points to u(R) – without a priori assumptions.
J. Ángyán (EMQC)
IMF
39 / 201
Equations of state - generalities
The total energy is a function of xα external parameters
E = E(x1 , x2 , . . . xn )
Define generalized forces corresponding to external parameters
Xα = −
∂E
∂xα
In statistical mechanics the equations of state describe the relationship of the external
parameters, the generalized forces and the temperature:
X α = kT
∂ ln Z
∂xα
where Z is the partition function. For the special case of volume (xα = V ) and pressure
(X α = P )
∂ ln Z
P = kT
∂V
J. Ángyán (EMQC)
IMF
40 / 201
The semi-classical partition function
ZZ
Z
1
.
.
.
e−(K+U )/kT d3 p
~1 d3 p
~2 . . . d3 p
~N d3~r1 d3~r2 . . . d3~rN
Z=
N !h3N
is a product of two terms, depending on the kinetic and the potential energy,
respectively:
1X
1 X 2
pj
U=
ujk
K=
2m
2
jk
1
Z=
N !h3N
ZZ
|
Z
ZZ Z
. . . e−K/kT d3 p
~1 d3 p
~2 . . .d3 p
~N
. . . e−U/kT d3~r1 d3~r2 . . .d3~rN
{z
}|
{z
}
ZU
(2πmkT )3N/2
Partition function
1
Z=
N!
J. Ángyán (EMQC)
2πmkT
h2
IMF
3N/2
· ZU
41 / 201
Equations of state - ideal gas
For an ideal gas uij → 0 (or if T is high kT → ∞)
e−U/kT → 1
ZU = V N
and the corresponding partition function
«–
»
„
3
3
1
2πm
+ N ln V + ln kT + ln
ln Zid = ln
N!
2
2
h2
Equation of state for an ideal gas
P = kT
∂ ln Zid
N kT
=
∂V
V
or
P V = N kT
J. Ángyán (EMQC)
IMF
42 / 201
Equations of state - real gas
For a real gas with low number density (n = N/V small) an approximate expression can
be obtained for the configurational partition function.
Take the average potential energy with β = 1/kT , which satisfies the following
relationship
RRR
U e−βU d3~r1 d3~r2 . . . d3~rN
∂
U = RRR −βU 3 3
=−
ln ZU
∂β
e
d ~r1 d ~r2 . . . d3~rN
The logarithm of the partition function is
β
Z
ln ZU (β) = N ln V −
U (β 0 )dβ 0
0
In a low-density system the U , the average potential energy of 1/2N (N − 1) molecule
pairs is equal N 2 /2-fold of the average potential energy of an arbitrary pair of molecules:
U=
J. Ángyán (EMQC)
1
1
N (N − 1) u ≈ N 2 u
2
2
IMF
43 / 201
The average potential energy of a pair of molecules
R
Z
~
u(R)e−βu(R) d3 R
∂
~
u = R −βu(R)
=−
ln e−βu(R) d3 R
~
∂β
e
d3 R
Since u(R) = 0 almost everywhere, excepted the small distances, it is worthwhile to
transform the integral as
Z
Z h
“
”i
~ = V + I(β)
~ =
1 + e−βu(R) − 1 d3 R
e−βu(R) d3 R
The quantity in parentheses is the Mayer-function f (R) = e−βu(R) − 1, and its integral
over the intermolecular separation, R is
Z ∞“
”
e−βu(R) − 1 R2 dR
I(β) = 4π
0
J. Ángyán (EMQC)
IMF
44 / 201
Calculate the average potential energy for a pair of molecules
»
„
«–
I(β)
∂
∂
1 ∂I(β)
u=
ln [V + I(β)] =
ln V + ln 1 +
≈− ·
∂β
∂β
V
V
∂β
which is substituted in the expression of the configurational partition function
1 N2
[I(0) − I(β)]
2 V
ln ZU (β) = N ln V +
The equation of state is
P
∂ ln Z
∂ ln Z
N
1 N2
=
=
=
−
I(β)
kT
∂V
∂VU
V
2 V2
or
PV
PV
4π N
=
=1−
RT
N kT
2 V
J. Ángyán (EMQC)
Z
IMF
∞
“
”
e−βu(R) − 1 R2 dR
0
45 / 201
This is the first term of the virial equation of state:
z=
∞
X
PV
Bn+1
=1+
RT
Vn
n=1
and the virial coefficient is
∞
Z
B2 (T ) = −2πN
“
”
e−u(R)/kT − 1 R2 dR
0
J. Ángyán (EMQC)
IMF
46 / 201
Temperature dependence of the virial coefficient
J. Ángyán (EMQC)
IMF
47 / 201
Temperature dependence of the virial coefficient
T \R
low
small (u > 0)
large (u < 0)
+
––
B2 < 0
+
–
B2 > 0
kT < u0
high
kT > u0
f (R) = e−u(R)/kT − 1
J. Ángyán (EMQC)
IMF
48 / 201
Third virial coefficients
B3 (T ) = B3add + ∆B3
For a strictly additive potential
B3add = −
N 3
8π
3
ZZZ
f12 f13 f23 r12 r13 r23 dr12 dr13 dr23
The non-additivity correction depends on the 3-body potential ∆U3
ZZZ “
”
N 3
8π
e−∆U3 /kT − 1 e−U2 /kT r12 r13 r23 dr12 dr13 dr23
3
For rare gases ∆B3 is up to 50% of the third virial coefficient!
∆B3 =
J. Ángyán (EMQC)
IMF
49 / 201
VRT spectroscopy
Calculated splitting due to tunneling is very sensitive to the height and shape of the
barrier – stringent test of the PES.
J. Ángyán (EMQC)
IMF
50 / 201
Experimental vs. calculated VRT splittings with different water-water potentials. None
of the 14 potentials was found to be fully satisfactory.
Fellers, Braly, Saykally, Leforestier, J. Chem. Phys. 110 (1999) 6306
J. Ángyán (EMQC)
IMF
51 / 201
Further experimental techniques
transport properties of gases: thermal conductivity, diffusion coefficient, viscosity
lattice vibrations (phonon dispersion)
liquid structure: atom-atom pair distribution functions from X-ray and N scattering,
diffusion coefficient (velocity autocorrelation function)
rotational fine structure of vibrational spectra
molecular beam experiments: scattering cross sections
etc....
Further reading: Rigby, Smith, Wakeham, Maitland: The forces between molecules,
Clarendon Press, Oxford (1986).
J. Ángyán (EMQC)
IMF
52 / 201
Match theory vs. experiment: advantage theory...
J. Ángyán (EMQC)
IMF
53 / 201
Part III
Long range electrostatic interaction
J. Ángyán (EMQC)
IMF
54 / 201
Poisson’s equation
∇·
Force between two point charges
F =
therefore
q q0
(r − r 0 )
|r − r 0 |3
Z
∇ · E(r) = 4π
and the electric field is the force acting on
a unit charge in interaction with q 0 placed
at the origin:
dr 0 δ(r − r 0 )ρ(r 0 )
= 4π ρ(r)
Since the field is the negative gradient of
the potential:
q0
E(r) =
r
|r|3
E(r) = −∇ · V (r)
Using the superposition law, the electric
field of a continuous charge distribution
Z
ρ(r)
E(r) = dr 0
(r − r 0 )
|r − r 0 |3
one gets Poisson’s equation
∇2 V (r) = −4π ρ(r)
The electrostatic potential is
Z
ρ(r)
V (r) = dr 0
|r − r 0 |
Take the divergence of both sides and use
J. Ángyán (EMQC)
(r − r 0 )
= 4π δ(r − r 0 )
|r − r 0 |3
IMF
55 / 201
Taylor expansion of the electrostatic potential
Potential V (R) of the charge distribution %(r)
Z
%(r)
V (R) = dr
|R − r|
Z
= dr T (R − r) %(r)
can be expanded in Taylor series around r = 0
(|r| < |R|).
Taylor expansion in Cartesian coordinates of the Coulomb interaction function
„ «
„ «
1
1 X
1
1 XX
1
T (R − r) =
−
rα ∇α
+
rα rβ ∇α ∇β
R
1! α
R
2! α
R
β
„ «
X
X
X
1
1
rα rβ rγ ∇α ∇β ∇γ
−
+ ...
3! α
R
γ
β
Attention to alternating signs!
J. Ángyán (EMQC)
IMF
56 / 201
Expanded electrostatic potential
Taylor expansion in the electrostatic potential expression
Z
Z
Z
1 XX
V (R) = T (R) dr%(r) − Tα (R) drrα %(r) +
Tαβ (R) drrα rβ %(r)
2! α
β
Z
X
X
X
1
−
Tαβγ (R) drrα rβ rγ %(r) + . . .
3! α
γ
β
Cartesian interaction tensors
Multipole moments
Z
q=
T (R) =
dr%(r)
„
«
1
R
„ «
1
Tαβ (R) = ∇α ∇β
R
„ «
1
Tαβγ (R) = ∇α ∇β ∇γ
R
„ «
1
Tαβ...ν (R) = ∇α ∇β . . . ∇ν
R
Z
mα =
Tα (R) = ∇α
drrα %(r)
Z
Qαβ =
drrα rβ %(r)
Z
Oαβγ =
drrα rβ rγ %(r)
Z
ξαβ...ν =
J. Ángyán (EMQC)
1
R
(n)
drrαβ...ν %(r)
IMF
57 / 201
Tensor notation
generalization of the notion of scalar, vector and matrix
its rank is the number of indices
rank
rank
rank
rank
0:
1:
2:
3:
scalar e.g. charge q
vector e.g. dipole µα = {µx , µy , µz }
matrix e.g. quadrupole Θαβ
e.g octupole Ωαβγ
its dimension is the range of the indices (e.g. 3-dimensional)
Kronecker delta is defined as

δαβ =
1,
0,
if α = β;
if α =
6 β.
Einstein summation convention over repeated indices:
Aαα = Axx + Ayy + Azz = TrA
µα V α = µx V x + µy V y + µz V z
δαα = δxx + δyy + δzz = 3
J. Ángyán (EMQC)
IMF
trace
contraction
(not equal to 1!)
58 / 201
Electrostatic potential, field, field gradient...
Using the tensor notation the potential is simply
V (R) = qT (R) − mα Tα (R) +
(−)n
1
Qαβ Tαβ (R) − . . . +
ξαβ...ν Tαβ...ν (R)
2!
n!
The electric field is the negative gradient of the potential:
Fα (R) = −∇α V (R)
Since ∇α Tβγ...ν (R) = Tαβγ...ν (R) – the rank of interaction tensor is increased,
Fγ (R) = −qTγ (R) + mα Tαγ (R) −
1
Qαβ Tαβγ (R) + . . .
2!
It is "easy" to obtain higher derivatives: just add another suffix to the interaction
tensors. Field gradient:
Fγ (R) = −qTγ (R) + mα Tαγ (R) −
J. Ángyán (EMQC)
IMF
1
Qαβ Tαβγ (R) + . . .
2!
59 / 201
Let us look at in more details the expansion of the electrostatic potential
V (R) =
X
i
qi
|R − r i |
Expand in Taylor series as
V (R) =
X
qi
i

×
1
+ riα
R
„
∂
1
∂riα |R − r i |
«
+
r iα =0
1
riα riβ
2
„
∂2
1
∂riα ∂riβ |R − r i |
«
ff
+ ...
r iα =0
Change derivative w.r.t. riα to Rα (change of sign!):
V (R) =
X
qi
i

×
„
1
+ riα
R
−
1
∂
∂Rα |R − r i |
«
+
r iα =0
1
riα riβ
2
„
∂2
1
∂Rα ∂Rβ |R − r i |
ff
«
+ ...
r iα =0
Set r iα = 0
V (R) =
X
i

qi
1
1
1
1
1
1
− riα ∇α + riα riβ ∇α ∇β −
riα riβ riγ ∇α ∇β ∇γ + . . .
R
R
2
R
3!
R
= qT − mα Tα +
J. Ángyán (EMQC)
ff
1
1
Qαβ Tαβ −
Oαβγ Tαβγ
2
3!
IMF
60 / 201
Calculation of cartesian interaction tensors
They are defined as
T =
1
1
= R−1 = p
R
Rx2 + Ry2 + Rz2
Use the following derivation rules:
∇α Rβ = δαβ
∇α Rn = nRα R(n−2)
∇α R−n = −nRα R−(n+2)
First order
Tα (R) = ∇α T (R) = −Rα R−3
Second order
Tαβ (R) = ∇α ∇β T (R) = −∇α Rβ R−3 = −δαβ R−3 + 3Rα Rβ R−5
= (3Rα Rβ − R2 δαβ )R−5
Third order
Tαβγ (R) = ∇α ∇β ∇γ T (R) = δα (3Rβ Rγ − R2 δβγ )R−5
= 3δαβ Rγ R−5 + 3δαγ Rβ R−5 + 3δβγ Rα R−5 + 3 · 5 · Rα Rβ Rγ R−7
“
”
= 3 5Rα Rβ Rγ − R2 (Rα δβγ + Rβ δγα + Rγ δαβ ) R−7
J. Ángyán (EMQC)
IMF
61 / 201
Properties of cartesian interaction tensors
Symmetric w.r.t. permutation of indices – order of differentiation does not matter
Tαβγ = Tβαγ = Tβγα = . . .
Contraction of any pairs of indices gives zero:
Tαβ...β...ν = 0
For instance, at second order:
Tαα = (3Rα Rα − R2 δαα )R−5 = (3R2 − R2 3)R−5 = 0
(1/R) satisfies the Laplace equation:
∇2
J. Ángyán (EMQC)
1
1
= ∇α ∇α
=0
R
R
IMF
62 / 201
Traced Cartesian multipole moments
There are several conventions in the literature to define multipole moments.
The previously defined traced cartesian multipole moments
Z
(n)
(n)
ξαβ...ν = drrαβ...ν %(r)
are symmetric tensors ξαβ = ξβα and their trace is nonzero
. X
ξαα =
ξαα 6= 0
α
They are called unnormalized traced Cartesian multipoles.
The unabridged multipoles of Applequist differ from them by a normalization factor:
(n)
µαβ...ν =
J. Ángyán (EMQC)
1 (n)
ξ
n! αβ...ν
IMF
63 / 201
Meaning of the trace
Spatial extent
The trace of the second moment of a
charge distribution is used to P
characterize its spatial extent, h i ri2 i
(a kind of scalar moment of inertia for
the electrons).
The full charge density can be reconstructed from traced multipoles. Consider the
Fourier transform of %(r)
Z
%(k) = dreikr %(r)
and expand the exponential
Z
Z
Z
1
%(k) = dr%(r) +ikα dr rα %(r) − kα kβ dr rα rβ %(r) + . . .
2!
{z
}
|
{z
}
|
| {z }
q
J. Ángyán (EMQC)
mα
IMF
Qαβ
64 / 201
Traceless Cartesian multipoles (Buckingham)
Potential of the second moment
V (2) (R) =
Since the T (R) =
1
R
1
Qαβ Tαβ (R)
2
function satisfies the Laplace equation
„ «
1
∇2
=0
R
«
„
X
X
1
∇α ∇α
=
Tαα (R) = 0
R
α
α
we can add to the quadrupole potential an arbitrary quantity
λδαβ Tαβ (R)
without changing its value
V (2) (R) =
J. Ángyán (EMQC)
1
(Qαβ + λδαβ ) Tαβ (R)
2
IMF
65 / 201
Let us choose λ such as the trace of Qαβ
1
1X
λ = − Qαα = −
Qαα = r2
3
3 α
The new expression of the quadrupole potential
Z
”
“
1 1
V (2) (R) = ·
dr 3rα rβ − r2 δαβ %(r)Tαβ (R)
2 3
1
= Θαβ Tαβ (R)
3
in terms of the traceless cartesian quadrupole moment
Z
”
“
1
Θαβ =
dr 3rα rβ − r2 δαβ %(r)
2
J. Ángyán (EMQC)
IMF
66 / 201
Traceless (Buckingham) multipole moments
General definition
(n)
Mαβ...ν =
(−)n
n!
Z
dr%(r)r2n+1
∂n
∂rα ∂ . . . rν
„ «
1
r
Electrostatic potential
V (R) =
X
n
(−)n
(n)
(n)
M
T
(R)
(2n − 1)!! αβ...ν αβ...ν
where the notation (2n − 1)!! means
(2n − 1)!! = 1 · 3 · 5 · . . . (2n − 1)
The traceless multipoles do not contain the full information about the %(r) charge
distribution, since they are undetermined up to an arbitrary spherically symmetric
component.
Example of quadrupole:
Z
1
(2)
dr%(r) r5 (3rα rβ − δαβ r2 )r−5 = Θαβ
Mαβ =
2
J. Ángyán (EMQC)
IMF
67 / 201
Dipole moments
Typical values of dipole moments
H2O
H2S
HF
HCl
HBr
HI
CO
NH3
PH3
AsH3
NaCl
H2CO
CH3CN
D
1.85
0.98
1.91
1.08
0.80
0.42
0.12
1.47
0.58
0.20
9.00
2.33
3.91
J. Ángyán (EMQC)
a.u.
0.728
0.386
0.751
0.425
0.315
0.165
0.047
0.578
0.228
0.079
3.541
0.917
1.538
1030 Cm
6.17
3.27
6.37
3.60
2.67
1.40
0.40
4.90
1.93
0.67
30.02
7.77
13.04
Traditional unit is Debye:
1 D=10−18 e.s.u.
SI units are impractical
1 D = 3.33564×10−30 C m
1 C m = 0.29979×1030 D
1 C m = 0.11795×10−30 a.u.
Atomic units are convenient:
1 a.u. = 2.54177 D
1 a.u. = 8.47836×10−30 C m
IMF
68 / 201
Quantum chemical calculation of dipole moments
Good basis set with polarization function needed
Hartree-Fock overestimates dipole moments
Correlated methods are recommended
DFT methods are usually not too bad
Mol
CO
H2 O
H2 S
HF
HCl
NH3
PH3
SO2
HF/POL
-0.25
1.98
1.11
1.92
1.21
1.62
0.71
1.99
J. Ángyán (EMQC)
MP2/POL
0.31
1.85
1.03
1.80
1.14
1.52
0.62
1.54
BLYP/POL
0.19
1.80
0.97
1.75
1.08
1.48
0.59
1.57
IMF
B3LYP/cc-pVTZ
0.13
1.92
1.19
1.83
1.21
1.59
0.53
2.01
B3LYP/POL
0.10
1.86
1.01
1.80
1.12
1.52
0.62
1.67
exp.
0.12
1.85
0.98
1.83
1.11
1.47
0.58
1.63
69 / 201
Quadrupole moments
Quadrupole moment is a second-order tensor: matrix
0
3xi xi − ri2
3xi yi
1 X @
3xi yi
3yi yi − ri2
Θ=
qi
2 i
3xi zi
3yi zi
1
3xi zi
A
3yi zi
2
3zi zi − ri
tensor notations:
Θαβ =
´
1 X `
qi 3riα riβ − ri2 δαβ
2 i
Symmetrical
Traceless
Has the dimensions of [charge]×[length]2 , so the atomic units are
ea20 = 4.49 × 10−40 C m
Other units: Buckinghams (B) 1 B = 1 DÅ= 10−26 e.s.u.
1 a.u. =1.3450×10−26 e.s.u. = 4.487×10−40 C m2
J. Ángyán (EMQC)
IMF
70 / 201
Estimation of quadrupole moments
The traceless quadrupole moment tensor has five independent components:
Θαβ = Θβα
Trace is zero: Θαα = 0
Independent components: Θzz , Θxx − Θyy , Θxy , Θyz , Θxz
For systems with axial symmetry,
Θxx − Θyy = 0 and we have
Θzz =
1 X
qi (3zi2 − ri2 )
2 i
1 X
z2
qi ri2 (3 i2 − 1)
2 i
ri
1 X
=
qi ri2 (3 cos θ2 − 1)
2 i
=
Angular function 1/2(3 cos θ2 − 1) > 0 near the z-axis (θ < 54.736◦ or θ > 125.264◦ ) so
positive charge in these regions contribute positively, while positive charge near the xy
plane (54.736◦ < θ < 125.264◦ ) contribute negatively.
J. Ángyán (EMQC)
IMF
71 / 201
Quadrupole moments
BX3
CO2
Negatively charged O atoms on the z axis
lead to negative quadrupole moment of
-3.3 a.u.
J. Ángyán (EMQC)
Negatively charged X(=F,Cl) atoms in the
xy plane lead to a positive quadrupole
moment: BF3 ∼ 2.5 a.u.; BCl3 ∼ 1.5 a.u.
(Theory: 3.0 a.u. and 0.8 a.u.)
IMF
72 / 201
Some experimental quadrupole moments
Water (xz plane −z axis to O )
Molecule
H2
N2
HCl
CO
benzene
C6 F6
ethane
C3 H3
NH3
DÅ
+0.6
-1.4
+3.8
-2.5
-8.5
+9.5
-0.8
+1.6
-2.3
J. Ángyán (EMQC)
a.u.
+0.45
-1.04
+2.83
-1.86
-6.32
+7.06
-0.59
+1.19
-1.71
10−40 Cm2
+2.1
-4.9
+12.3
-8.2
-29.7
+31.7
-2.7
+5.3
-7.7
0
+2.63
0
Θ=@
0
0
−2.50
0
1
0
A
0
−0.13
H2 C=CH2 (yz plane z axis along C=C)
0
−3.25
0
Θ=@
0
IMF
0
+1.62
0
1
0
A
0
+1.62
73 / 201
Change of origin: dipole moments
Dipole moment of a point charge distribution
X
µα =
qi riα
i
In a new frame obtained after a translation by a vector R
X
X
X
µ0α =
qi (riα − Rα ) =
qi riα − Rα
qi = µα − Rα qtot
i
i
i
Dipole of a neutral system (qtot = 0) is invariant to translation of origin.
Dipole moment of a charged system can always be set zero if the origin is at the
center of charge (barycenter).
J. Ángyán (EMQC)
IMF
74 / 201
Change of origin: quadrupole moment
Change of origin; r 0 = r − R
´
1`
3(r − R)α (r − R)β − |r − R|2 δαβ
2
3
3
1
= Θαβ − Rα µβ − Rβ µα + µ · Rδαβ + q(3Rα Rβ − R2 δαβ )
2
2
2
Θ0αβ =
In general, it is not possible to find a center of dipole (5 quadrupole components to
be annihilated, only 3 translational degrees of freedom)
For molecules with 3-fold (or higher) axis of symmetry Θzz = −2Θxx = −2Θyy
and only 1 nonzero dipole (µz ):
Θ0zz = Θzz − 2Rz µz
thus Rz = 12 Θzz µ−1
z is the center of dipole
J. Ángyán (EMQC)
IMF
75 / 201
Change of origin: quadrupole moment
Quadrupole relative to the center of mass
Quadrupole relative to the H atom
Θzz > 0
Θzz < 0
Hydrogen fluoride molecule
J. Ángyán (EMQC)
IMF
76 / 201
Electrostatic energy
Work to assemble a set of point
charges qi at r i is
U=
The charge distribution is partitioned
to two (or more) pieces:
1X
qi V (r i )
2 i
B
%r = %A
r + %r
Total electrostatic energy splits on
several contributions:
Generalized for continuous charge
distributions
Z
1
U=
dr%(r) V (r)
2
U=
splits to a self-energy contribution
Using the expression of the potential
we obtain the total electrostatic energy
ZZ
%(r)%(r 0 )
1
drdr 0
U=
2
|r − r 0 |
J. Ángyán (EMQC)
1
1 B B
A
Uself = %A
%r %r0 Trr0
r %r 0 Trr 0 +
2
2
and an interaction energy
B
Uint = %A
r %r 0 Trr 0
Shorthand notation
U=
1 A
A
B
(%r + %B
r )(%r 0 + %r 0 ) Trr 0
2
We are interested in the electrostatic
interaction energy
1
%r %r0 Trr0
2
IMF
77 / 201
Electrostatic interaction energy
Electrostatic interaction energy of two charge distributions is the interaction of one
charge distribution with the potential of the other.
ZZ
U=
%A (r)%B (r 0 )
|r − r 0 |
Z
dr%A (r)V B (r)
Z
dr 0 %B (r 0 )V A (r 0 )
=
=
drdr 0
We know how to calculate the potential created by a charge distribution;
what is the energy of %(r) in an external potential?
J. Ángyán (EMQC)
IMF
78 / 201
Charge distribution in an external potential
Choose the origin inside the charge distribution, %(r) and expand the external potential
in Taylor series around the origin
V (r) = V (0) + rα Vα (0) +
1
1
rα rβ Vαβ (0) + rα rβ rγ Vαβγ (0) + . . .
2!
3!
From the expression of the interaction energy
Z
Z
Z
U = dr%(r)V (r) = dr%(r)V (0) + dr%(r)rα Vα (0)
Z
Z
1
1
+
dr%(r)rα rβ Vαβ (0) +
dr%(r)rα rβ rγ Vαβγ (0) + . . .
2!
3!
where one recognizes the unnormalized traced multipoles,
U = ξV + ξα Vα +
J. Ángyán (EMQC)
1
1
ξαβ Vαβ + ξαβγ Vαβγ + . . .
2!
3!
IMF
79 / 201
Interaction with external potential
By the virtue of the Laplace equation, Vαα = 0, the trace of ξαβ = Qαβ , i.e. 13 Qαα can
be subtracted from the quadrupolar energy
1
1
1
1
Qαβ Vαβ = Vαβ (Qαβ − δαβ Qαα ) = Vαβ Θαβ
2
2
3
3
By similar manipulations at higher orders one obtains the interaction energy in terms of
traceless Buckingham multipole moments
1
1
Θαβ Vαβ +
Ωαβγ Vαβγ
3
3·5
1
1
(n)
+
Φαβγδ Vαβγδ +
Mα...ν
Vα...ν
3·5·7
(2n − 1)!!
U = qV + µα Vα +
The energy is the scalar product of the field with dipole, field gradient with quadrupole
and higher field gradients with the corresponding multipole tensors.
Attention: the result may depend on the choice of origin!
J. Ángyán (EMQC)
IMF
80 / 201
Multipoles in field, field gradient
Quadrupole/field-gradient interaction
Dipole/field interaction
U=
U = Fx µx + Fy µy < 0
J. Ángyán (EMQC)
IMF
1
Fxy Θxy > 0
3
81 / 201
Multipole-multipole interaction energy
Take two sets of multipoles. Double Taylor series of the Coulomb interaction
1
1
1
=
=
=
|τ − τ 0 |
|B + s − A − r|
|R − (r − s)|
„ «
„ «
1
1
1
1
=
+ (rα − sα )∇α
+ (rα − sα )(rβ − sβ )∇α ∇β
+ ...
R
R
2!
R
which leads directly to an expression of the interaction energy of two multipole charge
distributions in terms of their traced Cartesian moments
B
A
U (R) = q A q B T (R) + (mA
α q − q mα ) Tα (R)
1
B
A B
A B
A B
+ (QA
αβ q + q Qαβ − mα mβ − mβ mα ) Tαβ (R) + . . .
2!
Using the traceless (Buckingham) moments
U (R) =
X
`1 `2
J. Ángyán (EMQC)
(−)`1
)[A] (`1 +`2 )
)[B]
Mα(`11...ν
T
(R)Mα(`22...ν
1 α1 ...ν1 α2 ...ν2
2
(2`1 − 1)!!(2`2 − 1)!!
IMF
82 / 201
Multipole interactions - general remarks
Multipole-multipole interactions with traceless moments:
B
A
U = q A T q B + µA
α Tα q − q Tα µα
1 A
1
B
− µA
Θαβ Tαβ q B + q A Tαβ ΘB
α Tαβ µβ +
αβ
3
3
1 A
1
1 A
1 A
B
q Tαβγ ΩB
Ωαβγ Tαβγ q B − µA
Θβγ Tαβγ µB
+
αβγ −
α Tαβγ Θβγ +
α
15
15
3
3
1 A
+ Θαβ Tαβγδ ΘB
γδ + . . .
9
The interaction between multipoles of rank [nA ] and rank [nB ] is:
U = M [nA ] M [nB ] × R−nA −nB −1 × angular factor
Strongly orientation dependent
Electrostatic energy can be truncated either by the highest rank of multipole (e.g. up to
Θ-Θ) or by the highest rank of the interaction tensor (e.g. up to R−5 , including q-Φ
interactions).
J. Ángyán (EMQC)
IMF
83 / 201
Summary of multipole-multipole interactions
J. Ángyán (EMQC)
IMF
84 / 201
Dipole-dipole interaction
Dipole-dipole interaction energy
B
Uµµ = −µA
α Tαβ µβ
3Rα Rβ − R2 δαβ B
µβ
R5
µA · µB − 3 (µA · R̂) (µB · R̂)
=
R3
= −µA
α
A convenient setting of the coordinates is the z
axis along the intermolecular vector from A to
B. The dipoles are specified by their polar
angles.
0
1
0
R = @ 0 A,
R
J. Ángyán (EMQC)
0
µA
1
sin θA cos φA
= µA @ sin θA sin φA A
cos θA
IMF
0
µB
1
sin θB cos φB
= µB @ sin θB sin φB A
cos θB
85 / 201
Dipole-dipole interaction
The dipole-dipole interaction energy becomes
Uµµ = −
´
µA µB `
2 cos θA cos θB − sin θA sin θB cos φ
R3
with φ = φB − φA
The most favorable orientation at a given distance R is
θA = θB = 0, where the interaction energy is
−2µA µB /R3 .
Another favorable orientation is θA = θB = π/2, φ = π,
with the interaction energy −µA µB /R3
J. Ángyán (EMQC)
IMF
86 / 201
Dipole-quadrupole interaction
Dipole-quadrupole interaction energy of two linear molecules:
UµΘ = −
´
3µA ΘB `
2 sin θA sin θB cos θB cos φ − cos θA (3 cos2 θB − 1)
2R4
Some of the special configurations:
J. Ángyán (EMQC)
IMF
87 / 201
Quadrupole-quadrupole interaction
Quadrupole-quadrupole interaction energy between two symmetric top molecules.
non-zero quadrupole moment components are Θzz = Θ and Θxx = Θyy = − 12 Θ
UΘΘ =
3ΘA ΘB ˆ
1 − 5 cos2 θA − 5 cos2 θB − 15 cos2 θA cos2 θB
4R5
˜
+ 2(4 cos θA cos θB − sin θA sin θB cos φ)2
The most favorable structures are the T-shaped and slipped parallel. Both of these occur
sometimes in the same crystal structures of quadrupolar molecules (e.g. N2 , CO,
benzene).
J. Ángyán (EMQC)
IMF
88 / 201
Interaction of two HX molecules
Competition of three multipolar interactions. Angular dependence for linear molecules
(symmetric tops) is the following:
dipole-dipole
Uµµ = −
µA µB
(2 cos θA cos θB − sin θA sin θB cos ϕ)
R3
dipole-quadrupole
UµΘ =
3µA ΘB
[cos θA (3 cos2 θB − 1) − sin θA sin 2θB cos ϕ]
4R4
quadrupole-quadrupole
ΘA ΘB 3
[1 − 5 cos2 θA − 5 cos2 θB − 15 cos2 θA cos2 θB
R5 4
+ 2(4 cos θA cos θB − sin θA sin θB cos ϕ)2 ]
UΘΘ =
J. Ángyán (EMQC)
IMF
89 / 201
The structure is characterized by θA ≈ 0 and ϕ = 0, µA = µB = µ and ΘA = ΘB = Θ.
The sum of the 4 interaction terms (two for UµΘ )
µ2
· 2 cos θ
R3
µΘ 3
+ 4 · [(3 cos2 θ − 1) − 2 cos θ]
R
2
Θ2
+ 5 · 3(3 cos2 θ − 1)
R
U =−
Introduce the parameter λ =
Θ
µR
¯
3
µ2 ˘
−2 cos θ + λ [(3 cos2 θ − 1) − 2 cos θ] + λ2 3(3 cos2 θ − 1)
3
R
2
¯
µ2 ˘
=
3λ(1 + 2λ)(3 cos2 θ − 1) − 2(2 + 3λ) cos θ
3
2R
U=
J. Ángyán (EMQC)
IMF
90 / 201
Electrostatic interaction energy
is plotted for the
HF dimer
µ = 0.72ea0 ,
Θ = 1.875ea20
R = 5.1a0 ;
minimum at 68 degrees
(exp. 60)
HCl dimer
µ = 0.433ea0 ,
Θ = 2.8ea20
R = 6.8a0 ;
minimum at 79 degrees
J. Ángyán (EMQC)
IMF
91 / 201
Legendre expansion of the potential
The distance |R − r| can be expressed
with the help of the cosine rule
(R − r) · (R − r) = R2 + r2 − 2Rr cos γ
The Coulomb interaction T (R−r) = 1/|R−r| can be written in two alternative forms
8 h
i−1/2
` r ´2
`r´
>
> R1 1 + R
if r < R,
−
2
cos
γ
>
R
<
T (R − r) =
>
h
i−1/2
>
>
: 1 1 + ` R ´2 − 2` R ´ cos γ
r
r
r
J. Ángyán (EMQC)
IMF
if
r > R.
92 / 201
The expression in brackets is just the generator function of the Legendre polynomials
(1 + t2 − 2t cos γ)−1/2 =
∞
X
Pl (cos γ) tl
|t| < 1
l
The first few Legendre polynomials
P0 (x) = 1
P1 (x) = x
1
P2 (x) = (3x2 − 1)
2
1
P3 (x) = (5x3 − 3x)
2
1
P4 (x) = (35x4 − 30x2 + 3)
8
and at an arbitrary order they can be obtained from the recurrence relation
(2l + 1)xPl = (l + 1)Pl+1 + lPl−1
J. Ángyán (EMQC)
IMF
93 / 201
Depending on the space domains, either the first (r < R), or the second (R < r) form of
the generator function can be applied:
8P∞ l
r
>
< l Rl+1 Pl (cos γ) if r < R
T (R − r) =
>
:P∞ Rl
if r > R
l r l+1 Pl (cos γ)
The formulae for the two domains of space (r < R, r > R) are usually expressed in the
following condensed form
T (R − r) =
∞
l
X
r<
Pl (cos γ)
rl+1
l=0 >
The lowest-order terms explicitly for r = |r| |R|
3(r · R)2 − r2 R2
5(r · R)3 − 3 (r · R) r2 R2
1
1
r·R
=
+
+
+
+ ...
3
5
|R − r|
R
R
2R
2R7
where we used that r R cos γ = r · R
J. Ángyán (EMQC)
IMF
94 / 201
Exercises
Find the 4th order term of the Legendre expansion of 1/|R − r| in the above form
(i.e. using scalar products of the vectors r and R).
Derive the Legendre expansion in the above form up to 4th order making use of the
series expansion
1
x
3x2
5x3
35x4
√
=1− +
−
+
− ...
2
8
16
128
1+x
J. Ángyán (EMQC)
IMF
95 / 201
Spherical harmonic expansion
Addition theorem of spherical harmonics
„
Pl (cos γ) =
4π
2l + 1
« X
l
∗
Ylm (ω)Ylm
(Ω)
m=−l
where ω = (θ, φ) and Ω = (Θ, Φ) are the angular components of the polar coordinates of
r and R, respectively.
The (complex) spherical harmonics for m ≥ 0
Ylm (ω) = (−)m
„
2l + 1
4π
«„
(l − m)!
(l + m)!
«1/2
P`m (cos θ) exp(imφ)
and for m ≤ 0
∗
Ylm (ω) = (−)m Ylm
(ω)
J. Ángyán (EMQC)
IMF
96 / 201
Here we used the associated Legendre polynomials, that are defined for m > 0 through
the derivatives of Pl (x) as
„ «m
d
P`m (x) = (1 − x2 )m/2
P` (x)
dx
P00 (cos θ) = 1
P10 (cos θ) = cos θ
P11 (cos θ) = sin θ
1
P20 (cos θ) = (3 cos2 θ − 1)
2
P21 (cos θ) = 3 sin θ cos θ
P22 (cos θ) = 3 sin2 θ
Finally, we obtain the spherical harmonics form of the interaction kernel
„
T (R − r) =
J. Ángyán (EMQC)
4π
2l + 1
«X
∞ X
l
l
r<
∗
Ylm (ω)Ylm
(Ω)
rl+1
l=0 m=−l >
IMF
97 / 201
Potential outside of the charge distribution
If the charge distribution %(r) vanishes in the points R where we want to calculate the
potential, the condition r < R is always satisfied
V (R) =
«
Z
∞ X
` „
X
4π
∗
Y`m
(Ω)R−`−1 drY`m (ω)r` %(r)
2l + 1
`=0 m=−`
Define the modified spherical harmonics
„
C`m (ω) =
4π
2l + 1
«1/2
Y`m (ω)
as well as the regular, R`m (r), and irregular, I`m (r), spherical harmonics
I`m (r) = r−`−1 C`m (ω)
R`m (r) = r` C`m (ω)
J. Ángyán (EMQC)
IMF
98 / 201
Using these functions, in terms of complex spherical harmonics multipole moments, Q`m
Z
Q`m = drR`m (r)%(r)
the potential becomes
V (R) =
∞ X
`
X
Z
∞ X
`
X
(−) I`m (R) drR`m (r)%(r) =
(−)m I`m (R)Q`m
m
`=0 m=−`
`=0 m=−`
It is more practical to use real spherical harmonics instead the complex ones
r
1
Q`mc =
[(−)m Q`m + Q`m ]
2
r
1
Q`ms =
[(−)m Q`m − Q`m ]
2
The absolute value of the multipole moment
2
Q` =
`
X
Q`m Q∗`m =
X
Q2`κ
κ
m=−`
This quantity is invariant with respect to the orientation of the frame.
J. Ángyán (EMQC)
IMF
99 / 201
Transformation of spherical and cartesian moments
Relationship of the real spherical harmonics and Cartesian multipole moments
Q`mc/s
Q00
Q10
Q11c
Q11s
Q20
Q21c
Q21s
Q22c
Q22s
J. Ángyán (EMQC)
(n)
ξα...ν
q
mz
mx
my
1
(2Qzz − Qxx − Qyy )
2
√
3Qxz
√
3Qyz
√
3
(Qxx
2
− Qyy )
√
3Qxy
IMF
(n)
Mα...ν
q
µz
µx
µy
Θ
q zz
4
q3
Θxz
4
Θ
3 yz
√1 (Θxx − Θyy )
3 q
4
Θ
3 xy
100 / 201
Spherical harmonics expansion of the interaction
One can obtain the bipolar expansion by applying the previously derived result for
|r B − r A | < |R|
1
|R + r B − r A |
=
∞ X
l
X
(−)m Rlm (r B − r A )Ilm (R)
l=0 m=−l
According to the addition theorem of regular spherical harmonics
Rlm (r B + r A ) =
X X
δlA +lB ,l (−)l−m
lA lB mA mB
„
×
„
where
lA
lB
mA mB
J. Ángyán (EMQC)
lA
lB
mA mB
„
(2l + 1)!
(2lA )!(2lB )!
«1/2
×
«
l
RlA mA (r A )RlB mB (r B )
m
«
l
a Wigner 3j coefficient.
m
IMF
101 / 201
Use that Rlm (−r) = (−)l Rlm (r), and the multipole expansion of the interaction energy
becomes
„
«1/2
X X
(2lA + 2lB + 1)!
U (R) =
(−)lB
×
(2lA )!(2lB )!
lA lB mA mB m
„
«
lA
lB lA + lB
B
×
QA
lA mA QlB mB IlA +lB ,m (R)
mA mB
m
The multipole moments are expressed in a global coordinate system.
Transform the multipoles to a local coordinate system
X
l
Q̃lk =
Qlm Dmk
(Ω)
m
where Ω = (α, β, γ) is the rotation that takes the global axes to the local ones, and
l
Dmk
(Ω) are the elements of the (hermitian) Wigner rotation matrices.Inversely, the
global multipole components can be written in terms of the local ones
X
X
l
l
Qlm =
Q̃lk Dkm
(Ω−1 ) =
Q̃lk [Dkm
(Ω)]∗
k
J. Ángyán (EMQC)
k
IMF
102 / 201
Insert the local-frame multipole moments and define a new orientation-dependent
function
»„
«–−1
lA lB j
×
S̄lkAAlkBBj = ilA −lB −j
0 0 0
„
«
X
lA
lB lA + lB
lA
lB
∗
∗
×
[DkA mA (ΩA )] [DkB mB (ΩB )] Cjm (θ, φ)
mA mB
m
mA mB m
where θ, φ are the polar angles of the intermolecular vector. In terms of these functions
and expanding the Wigner 3j symbols one obtains
X X „lA + lB « A
mA mB
−lA −lB −1
U (R) =
Q̃lA mA Q̃B
lB mB S̄lA lB lA +lB R
lA
lA lB mA mB m
or after transformation to real components
X X „lA + lB « A
κA κB
−lA −lB −1
U (R) =
Q̃lA κA Q̃B
lB κB S̄lA lB lA +lB R
lA
lA lB κA κB m
J. Ángyán (EMQC)
IMF
103 / 201
One can define the spherical analogue of the interaction tensors
„
«
lA + lB
S̄lκ11l2κl21 +l2 R−l1 −l2 −1
Tl1 κ1 ,l2 κ2 =
lA
and the electrostatic interaction energy (operator) takes the simple form
X A AB B
X X
Q̃t Ttu Q̃u
U=
Q̃A
lA κA TlA κA ,lB κB Q̃lB κB =
tu
lA lB κA κB m
with t, u = {lκ}.
The T tensors can be expressed in terms of the unit vectors of the respective local
coordinate systems, and the vector R.
J. Ángyán (EMQC)
IMF
104 / 201
Interaction tensors between local frames
Following the derivation of Hättig and Heß (Mol.Phys. 81 (1994) 813), the interaction
energy in space-fixed frame
ZZ
%A (r)%B
SF (s)
U=
drds SF
|s − r|
Let us write the rotation matrices from the space-fixed (global) to the molecule-fixed
(local) frame as R̂(ΩA ) and R̂(ΩB ), where Ω = (α, β, γ) are the Euler angles, and the
coordinates
r = A + R̂(ΩA )r A
and
s = B + R̂(ΩB )r B
Use the notation R = B − A and that the length of a vector does not change by rotation
|s − r| = |R + R̂(ΩB )r B − R̂(ΩA )r A | = |R̂−1 (ΩA )R + R̂−1 (ΩA )R̂(ΩB )r B − r A |
J. Ángyán (EMQC)
IMF
105 / 201
Electrostatic energy in molecule-fixed charge distributions
ZZ
B
%A
MF (r A )%MF (r B )
=
U=
dr A dr B
|R̂−1 (ΩA )R + R̂−1 (ΩA )R̂(ΩB )r B − r A |
Z
∞ X
X
=
QA
dr B Il1 κ1 (R̂−1 (ΩA )R + R̂−1 (ΩA )R̂(ΩB )r B ) · %B
l1 κ1 ·
MF (r B )
l1
κ1
The irregular spherical harmonics can be expanded in Taylor series
−1
−1
Il1 κ1 (R̂A
R + R̂A
R̂B r B ) =
=
∞
X
1
−1
R) =
(R̂−1 R̂B r B · ∇R̂−1 R )l2 · Il1 κ1 (R̂A
A
l2 ! A
l2 =0
=
∞
X
1
−1
R)
(r B · ∇R̂−1 R )l2 · Il1 κ1 (R̂A
B
l2 !
l2 =0
J. Ángyán (EMQC)
IMF
106 / 201
and in terms of spherical tensors as
−1
−1
Il1 κ1 (R̂A
R + R̂A
R̂B r B ) =
=
∞ X
X
l2 =0 κ2
1
−1
R)
Rl κ (r B ) · Rl2 κ2 (∇R̂−1 R ) · Il1 κ1 (R̂A
B
(2l2 − 1)!! 2 2
Using the identity Ilκ (R) = (−)l Rlκ (∇)(1/R), the interaction energy becomes
U=
∞ XX
∞ X
X
l1
κ1
l2
B
AB
QA
l1 κ1 · Ql2 κ2 · Tl1 κ1 l2 κ2
κ2
with TlAB
interaction tensor
1 κ1 l2 κ2
TlAB
(R, ΩA , ΩB ) =
1 κ1 l2 κ2
J. Ángyán (EMQC)
(−)l1
1
1
−1
·
Rl κ (R̂−1 ∇R )Rl1 κ1 (R̂A
∇R )
(2l1 − 1)!! (2l2 − 1)!! 2 2 B
R
IMF
107 / 201
The rotated internuclear vector and the rotated differential operators can be expressed in
terms of direction cosines and the internuclear distance R. The rotation matrices can be
written in terms of the unit vectors of the molecule fixed frame in the space-fixed system
(A)
(A)
R̂A = (e(A)
x , ey , ez )
and
(B)
(B)
R̂B = (e(B)
x , ey , ex )
(A)
A
the intermolecular unit vector, eAB = R/R and the direction cosines, rα
= eα · eAB
and
(B)
cαβ = eβ · e(A)
α .
For instance
1
A2
(3rα
− 1)R−3
2
A B
= (3rα
rβ + cαβ )R−3
T20,00 =
T1α,1β
Computation of the general expressions in both cartesian and spherical tensors are quite
costly and scale as L6 , where L is the order of 1/R expansion. Using an intermediate
coordinate transformation, Hättig derived general recurrence relations, which scale as L4
(CPL, 260(1996)341).
J. Ángyán (EMQC)
IMF
108 / 201
J. Ángyán (EMQC)
IMF
109 / 201
Part IV
Induction energy
J. Ángyán (EMQC)
IMF
110 / 201
Electrostatic interaction Hamiltonian
Place a molecule in an external electrostatic field. The interaction Hamiltonian is
X
V̂ =
qk V (r k )
with
qk = e, Z
k
Let us define the operator of the total charge density
X
X
%̂(r) =
Zα δ(r − Rα ) −
δ(r − r i )
α
i
permitting to express the interaction Hamiltonian in the compact form as
Z
V̂ = dr %̂(r) V (r)
J. Ángyán (EMQC)
IMF
111 / 201
Molecule in a uniform electric field
Place molecules between two plates of a capacitor:
The electrostatic potential can be written in terms of the
3 components of the uniform electric field
X
V (r) = V0 +
Fα rα = V0 + Fα rα
α
(Einstein summation convention on repeated indices)
The interaction operator with the field of the capacitor simplifies as
Z
V̂ = dr %̂(r) (V0 + Fα rα ) = V0 q̂ + Fα µ̂α
where the operators of the total charge and total dipole moment of the molecule are
Z
Z
q̂ = dr %̂(r)
µ̂α = dr %̂(r)rα
J. Ángyán (EMQC)
IMF
112 / 201
Schrödinger equation with perturbation
We are looking for the ground state solution of the problem
Ĥψ = (Ĥ0 + V̂ )ψ = Eψ
and we already know the (exact) solution of the zero-order problem
Ĥ0 ϕ0 = E0 ϕ0
Let us write ∆E = E − E0 , the energy correction
(Ĥ0 − E0 )ψ = (∆E − V̂ )ψ
and in order to fix the phase of ψ, impose the intermediate normalization
hϕ0 |ψi = 1
J. Ángyán (EMQC)
IMF
113 / 201
Introduce the reduced resolvent operator as
R̂0 = (1 − |ϕ0 ihϕ0 |)(Ĥ0 − E0 )−1
which can be regarded as the inverse of the operator Ĥ0 − E0 in the space of functions
orthogonal to ϕ0
R̂0 (Ĥ0 − E0 ) = 1 − |ϕ0 ihϕ0 |
Multiplying the Schrödinger equation by R̂0
R̂0 (Ĥ0 − E0 )ψ = R̂0 (∆E − V̂ )ψ
using the definition of the resolvent and the intermediate normalization an equation is
obtained for the wave function
ψ = ϕ0 + R̂0 (∆E − V̂ )ψ
After multiplication of the Schrödinger equation by hϕ0 |
hϕ0 |(Ĥ0 − E0 )|ψi = hϕ0 |(∆E − V̂ )|ψi
we get the energy correction
∆E = hϕ0 |V̂ |ψi
J. Ángyán (EMQC)
IMF
114 / 201
Iterative solution
These equations can be solved iteratively
∆En = hϕ0 |V̂ |ψn−1 i
ψn = ϕ0 + R̂0 (∆En − V̂ )ψn−1
To the lowest orders of iteration we find by using ψ0 = ϕ0 and R̂0 ϕ0 = 0
∆E1 = hϕ0 |V̂ |ψ0 i
ψ1 = ϕ0 − R̂0 V̂ ψ0
∆E2 = hϕ0 |V̂ |ψ1 i = hϕ0 |V̂ |ψ0 i − hϕ0 |V̂ R̂0 V̂ |ψ0 i = ∆E1 − hϕ0 |V̂ R̂0 V̂ |ψ0 i
ψ2 = ϕ0 − R̂0 (∆E2 − V̂ )ψ1
= ϕ0 − R̂0 (hϕ0 |V̂ |ψ0 i − hϕ0 |V̂ R̂0 V̂ |ψ0 i − V̂ )(ϕ0 − R̂0 V̂ ψ0 )
= ϕ(1) − R̂0 (V̂ − ∆E2 )R̂0 V̂ ϕ0
J. Ángyán (EMQC)
IMF
115 / 201
H-atom in electric field
Hamiltonian of the H-atom in an electric field, Fz
Ĥ = Ĥ0 + ẑFz
where
1
1
Ĥ0 = − ∆ −
2
r
The Hamiltonian of the isolated H-atom has
the lowest eigenvalue E0 = − 12 and eigenfunction ϕ0 =
First iteration in the energy yields zero
√1 e−r .
π
∆E1 = Fz hϕ0 |ẑ|ψ0 i = µz · Fz = 0
First iteration in the wave function leads to the equation
ψ1 = ϕ0 − R̂0 V̂ ϕ0
“
”
(Ĥ0 − E0 )ψ1 = − V̂ − ∆E1 ϕ0
„
«
1
1
1
1
− ∆− +
ψ1 = − √ Fz z e−r
2
r
2
π
which has the solution
J. Ángyán (EMQC)
“r
”
Fz
ψ1 = − √ z
− 1 e−r
2
π
IMF
116 / 201
Second energy iteration
9
· Fz2
4
This leads to a development of the energy in the powers of Fz
∆E2 = Fz hϕ0 |ẑ|ψ1 i = −
E = E0 + ∆E2 = E0 −
9
· Fz2
4
the dipole polarizability is
„
α=−
J. Ángyán (EMQC)
∂2E
∂Fz2
«
=
Fz =0
IMF
9
a.u.
2
117 / 201
Perturbation approach
Assuming that the iteration process converges, the exact wave function and energy can
be expanded in power series of a perturbation parameter λ
(Ĥ0 + λV̂ )ψ = ∆Eψ
as
∆E =
∞
X
λn ∆E (n)
and
ψ=
n=1
∞
X
λn ψ (n)
n=0
Substitute the series expansions in
∆E = hϕ0 |V̂ |ψi
ψ = ϕ0 + R̂0 (∆E − V̂ )ψ
and
leading to
X
λn ∆E (n) =
n=1
X
λm+1 hϕ0 |V̂ |ψ (m) i
m=0
!
X
n=1
J. Ángyán (EMQC)
n
λ ψ
(n)
= ϕ0 + R̂0
X
m
λ ∆E
m=1
IMF
(m)
− λV̂
X
λk ψ (k)
k=1
118 / 201
Collect terms of the same power in λ to obtain the general recursion formulae
∆E (n) = hϕ0 |V̂ |ψ (n−1) i
ψ (n) = −R̂0 V̂ ψ (n−1) −
n−1
X
∆E (k) R̂0 ψ (n−k)
k=1
The reduced resolvent has the spectral resolution
R̂0 =
X |ϕ0 ihϕ0 |
E k − E0
k6=0
J. Ángyán (EMQC)
IMF
119 / 201
First order
ψ (1)
∆E (1) = hϕ0 |V̂ |ϕ0 i
X hϕk |V̂ |ϕ0 i
ϕk
= −R̂0 V̂ ϕ0 = −
Ek − E0
k6=0
The wave function corrections are often expressed in terms of the expansion coefficients
(n)
ck = hϕk |ψ (n) i on the basis of the eigenfunctions of the zero order
Hamiltonian
X hϕk |V̂ |ϕ0 i
(1)
ck = −
Ek − E0
k6=0
J. Ángyán (EMQC)
IMF
120 / 201
Second order
Energy
E (2) =hϕ0 |V̂ |ψ (1) i = −hϕ0 |V̂ R̂0 V̂ |ϕ0 i
X hϕ0 |V̂ |ϕk ihϕk |V̂ |ϕ0 i
=−
Ek − E0
k6=0
Wave function
ϕ(2) = R̂0 V̂ R̂0 V̂ ψ (1) + R̂0 E (1) R̂0 V̂ ψ (0) =
= R̂0 V̂ R̂0 V̂ ϕ0 − R̂0 hV̂ iR̂0 V̂ ϕ0 = R̂0 V R̂0 V̂ ϕ0
where we used the definitions
hV̂ i = hϕ0 |V̂ |ϕ0 i
J. Ángyán (EMQC)
and
IMF
V = V̂ − hV̂ i
121 / 201
Third order
∆E (3) = hϕ0 |V̂ |ψ (2) i = −hϕ0 |V̂ R̂0 V R̂0 V̂ |ϕ0 i
X X hϕ0 |V̂ |ϕk ihϕk |V |ϕl ihϕl |V̂ |ϕ0 i
=
(Ek − E0 )(El − E0 )
k6=0 l6=0
J. Ángyán (EMQC)
IMF
122 / 201
Summary of energy corrections
∆E (1) = hV̂ i
∆E (2) = hV̂ R̂0 V̂ i
∆E (3) = hV̂ R̂0 V R̂0 V̂ i
”
“
∆E (4) = hV̂ R̂0 V R̂0 V − hV R̂0 V i R̂0 V̂ i
∆E (5) = hV̂ R̂0 (V R̂0 V R̂0 V − hV R̂0 V R̂0 V i
− V R̂0 hV R̂0 V i − hV R̂0 V iR̂0 V )R̂0 V̂ i
J. Ángyán (EMQC)
IMF
123 / 201
Energy with the first-order wave function
The energy (Rayleigh quotient)
E=
hψ|Ĥ + λV̂ |ψi
hψ|ψi
with the first order wave function, ψ = ϕ0 − λR̂0 V̂ ϕ0
E=
hϕ0 − λϕ0 V̂ R̂0 |Ĥ + λV̂ |ϕ0 − λR̂0 V̂ ϕ0 i
1 + λ2 hϕ0 V̂ R̂0 |R̂0 V̂ ϕ0 i
After expanding the denominator and using that R̂0 Ĥ0 ϕ0 = 0
`
E = E0 + λE (1) − 2λ2 hϕ0 |V̂ R̂0 V̂ |ϕ0 i+
´
+ λ2 hϕ0 |V̂ R̂0 (Ĥ + λV̂ )R̂0 V̂ |ϕ0 i ×
`
´
× 1 − λ2 hϕ0 V̂ R̂0 |R̂0 V̂ ϕ0 i
J. Ángyán (EMQC)
IMF
124 / 201
and collecting terms of the same order
E = E0 + λE (1) −
− λ2 2hϕ0 |V̂ R̂0 V̂ |ϕ0 i−
− λ2 hϕ0 |V̂ R̂0 (Ĥ − E0 )R̂0 V̂ |ϕ0 i
+ λ3 hϕ0 |V̂ R̂0 (V̂ − E (1) )R̂0 V̂ |ϕ0 i
Use that E (1) = hV̂ i and R̂0 (Ĥ − E0 ) = 1 − |ϕ0 ihϕ0 | and obtain the previously derived
3rd order energy expression
E = E0 + hϕ0 |V̂ |ϕ0 i − hϕ0 |V̂ R̂0 V̂ |ϕ0 i + hϕ0 |V̂ R̂0 (V̂ − hV̂ i)R̂0 V̂ |ϕ0 i
This result can be generalized: the nth order wave function determines the (2n+1)th
order energy expression, provided the normalization is taken into account. This is
Wigner’s (2n + 1) theorem.
J. Ángyán (EMQC)
IMF
125 / 201
Deformation energy and perturbation energy
Up to second order the Rayleigh quotient can be written as a sum of two terms, the
expectation value of the zero order Hamiltonian
hϕ − λϕV̂ R̂0 |Ĥ|ϕ − λR̂0 V̂ ϕi
(2)
= E0 + λ2 hϕ|V̂ R̂0 V̂ |ϕi = E0 + ∆Edef
1 + λ2 hϕV̂ R̂0 |R̂0 V̂ ϕi
and the expectation value of the perturbation operator
hϕ − λϕV̂ R̂0 |λV̂ |ϕ − λR̂0 V̂ ϕi
(2)
= λhϕ|V̂ |ϕi − λ2 2hϕ|V̂ R̂0 V̂ |ϕi = E (1) + ∆Estab
1 + λ2 hϕV̂ R̂0 |R̂0 V̂ ϕi
The second order correction to the expectation value of the perturbation is twice the
second order energy correction and it is twice the energy raise of the wave function due
to the deformation of the wave function.
(2)
(2)
∆Estab = −2∆Edef
(2)
(2)
∆E (2) = ∆Estab − ∆Edef =
J. Ángyán (EMQC)
IMF
1
(2)
∆Estab
2
126 / 201
Molecule in external potential
In first order of the perturbation theory
∆E (1) = hψ0 |q̂|ψ0 i · V0 + hψ0 |µ̂α |ψ0 i · Fα = qV0 + Fα µα
one retrieves the classical charge-potential and dipole-field interactions.
In second-order of the perturbation theory
∆E (2) = −hψ0 |V̂ R̂0 V̂ |ψ0 i = −
X hψ0 |V̂ |ψk ihψk |V̂ |ψ0 i
Ek − E0
k6=0
The matrix elements hψ0 |q̂|ψk i = 0, since the eigenstates are orthogonal. Only the
dipolar term survives
X
∆E (2) = −
Fα hψ0 |µ̂α R̂0 µ̂β |ψ0 iFβ
αβ
Using the definition of the dipolar linear response function (polarizability)
∆E (2) = −
1 X
Fα ααβ Fβ
2
αβ
J. Ángyán (EMQC)
IMF
127 / 201
In third order of the perturbation theory
∆E (3) = −hψ0 |V̂ R̂0 V R̂0 V̂ |ψ0 i
Insert the interaction operator, and remember that V = V̂ − hV̂ i,
X
∆E (3) = −
Fα Fβ Fγ ×
αβγ
X X
hψ0 |µ̂α |ψk ihψk |µ̂β |ψl ihψl |µ̂γ |ψ0 i
−
(Ek − E0 )(El − E0 )
k6=0 l6=0
X hψ0 |µ̂α |ψk ihψk |µ̂γ |ψ0 i ff
hψ0 |µ̂β |ψ0 i
=
(Ek − E0 )2
k6=0
1X
=−
Fα Fβ Fγ βαβγ
6
αβγ
where βαβγ is the first dipolar hyperpolarizability (non-linear response function).
J. Ángyán (EMQC)
IMF
128 / 201
Multipole polarizabilities
Dipole polarizability is a symmetric tensor
0
αxx
α=@
αxy
αyy
1
αxz
αyz A
αzz
The SI units of polarizability are Farad m2 , or equivalently, C2 m2 J−1 or C m2 V−1 .
Other units are volume (Å3 or bohr3 ). 1 a.u. = bohr3 = 0.148185 Å3 = 0.16488×10−40
Farad m2 . 1 C2 m2 J−1 = 0.8988×1016 cm3 =6.065 ×1040 a.u.
Proportional to the volume, as it can be seen by introducing an average excitation
energy and using the resolution of identity for the polarizability of a one-electron system
α=
´
1 X 2h0|r̂α |nihn|r̂α |0i
2 `
≈
h0|r̂2 |0i − h0|r̂α |0ih0|r̂α |0i
3
∆E0n
3U
n6=0
and inversely proportional to the excitation energy.
J. Ángyán (EMQC)
IMF
129 / 201
As any second-rank tensor, it can be decomposed into irreducible parts, according to
α = α(0) + α(1) + α(2)
where
(0)
1
Tr(α)δαβ
3
1
= (ααβ − αβα ) = 0
2
1
1
= (ααβ + αβα ) − Tr(α)δαβ
2
3
ααβ =
(1)
ααβ
(2)
ααβ
α(1) vanishes, since α is symmetric. In a principal-axis system we have the decomposition
0
1 0
1
α 0 0
αxx − α
0
0
0
αyy − α
0 A
α = @0 α 0A + @
0 0 α
0
0
αzz − α
J. Ángyán (EMQC)
IMF
130 / 201
The first trace-invariant quantity that can be formed is the mean polarizability
α=
1
1
Trα = (αxx + αyy + αzz )
3
3
and the second trace-invariant is the polarizability anisotropy, γ, defined as the positive
root of
1
γ 2 = [3Tr(α2 ) − Tr(α)2 ]
2
or in components
1
γ 2 = [3ααβ αβα − ααα αββ ]
2
which can be written in a principal axis system
γ2 =
1
[(αxx − αyy )2 + (αyy − αzz )2 + (αzz − αxx )2 ]
2
and makes clear that this quantity vanishes for spherically symmetric systems.
For linear molecules αzz = αk and αxx = αyy = α⊥ and the polarizability anisotropy,
γ
γ = αk − α⊥
J. Ángyán (EMQC)
IMF
131 / 201
Translation of polarizabilities
The dipole-dipole polarizability is always origin-independent.
Higher-rank multipole polarizabilities are (always) origin-dependent.
For instance, the Az,zz component involves the Θ̂zz operator. After a shift of the origin
by c = (0, 0, c)
O
O
Θ̂C
zz = Θ̂zz − 2cµ̂z
and the dipole-quadrupole polarizability at the new origin is
AC
z,zz =
O
O
X h0|µ̂O
z |nihn|Θ̂zz − 2cµ̂z |0i
= AO
z,zz − 2cαzz
∆E0n
n6=0
This means that the origin (and the dipole polarizability) should always be specified
when Aα,βγ is given.
J. Ángyán (EMQC)
IMF
132 / 201
Spherical harmonic polarizabilities
The general multipole polarizabilities, defined in terms of the (irreducible) multipole
moment operators, Q̂`m
α`1 m1 ,`2 m2 =
X h0|Q̂` m |nihn|Q̂` m |0i + h0|Q̂` m |nihn|Q̂` m |0i
1 1
2 2
2 2
1 1
∆E0n
n6=0
is a reducible spherical tensor quantity, which can be decomposed into irreducible parts as
X
α`1 `2 :kq =
C(`1 `2 k; m1 m2 q)α`1 m1 ,`2 m2
m1 m2
where C(`1 `2 k; m1 m2 q) are the Clebsch-Gordan coefficients.
Since C = 0, unless k = `1 + `2 , `1 + `2 − 1, . . . , |`1 − `2 |, the nonzero irreducible parts of
the dipole-dipole polarizability can be only with k = 0, 2, for the dipole-quadrupole
polarizability, k = 1, 3, etc. For instance,
r
1
α11:00 =
(αxx + αyy + αzz )
3
r
2
α11:20 =
γ
3
J. Ángyán (EMQC)
IMF
133 / 201
Induction energy
Consider a potential and its derivatives created by a molecule A at the center of
molecule B.
The corresponding perturbation energy will be induction energy. At the second order:
Taking into account that hψ0B |q̂ B |ψbB i = 0, one has the leading terms of the induction
energy:
E (2) (ind,B) =
B
X h0|µ̂B
α |bihb|µ̂α0 |0i
− (Tα q A − Tαβ µA
(Tα0 q A − Tα0 β 0 µA
α + . . .)
α0 + . . .)−
B
∆E
0b
b6=0
B
X h0|Θ̂B
αβ |bihb|µ̂α0 |0i
− (Tαβ q A + Tαβγ µA
(Tα0 q A − Tα0 β 0 µA
γ + . . .)
β 0 + . . .)−
B
∆E
0b
b6=0
B
X h0|µ̂B
α |bihb|Θ̂α0 β 0 |0i
(Tα0 β 0 q A + Tα0 β 0 γ 0 µA
− (Tα q A − Tαβ µA
α + . . .)
γ + . . .)−
B
∆E
0b
b6=0
B
X h0|Θ̂B
αβ |bihb|Θ̂α0 β 0 |0i
(Tα0 β 0 q A − Tα0 β 0 γ 0 µA
− (Tαβ q A + Tαβγ µA
γ 0 + . . .) . . .
γ 0 + . . .)
B
∆E
0b
b6=0
J. Ángyán (EMQC)
IMF
134 / 201
Introduce the multipole polarizabilities
ααβ =
X h0|µ̂α |nihn|µ̂β |0i + h0|µ̂β |nihn|µ̂α |0i
∆E0n
n6=0
Aα,βγ
X h0|µ̂α |nihn|Θ̂βγ |0i + h0|Θ̂βγ |nihn|µ̂α |0i
=
∆E0n
n6=0
Cαβ,γδ =
1 X h0|Θ̂αβ |nihn|Θ̂γδ |0i + h0|Θ̂γδ |nihn|Θ̂αβ |0i
3
∆E0n
n6=0
and identify the parentheses as the electric field, field gradient, etc.
FαA = −(Tα q A − Tαβ µA
α + . . .)
A
Fαβ
= −(Tαβ q A + Tαβγ µA
γ + . . .)
The induction energy in terms of the field (and its gradients) and the multipolar
polarizabilities
1 A B
1 A B
1
B
A
0 Fα0 −
E (2) (ind,B) = − FαA αα,α
Fα Aα,α0 β 0 FαA0 β 0 − Fαβ
Cαβ,α0 β 0 FαA0 β 0 + . . .
2
3
6
J. Ángyán (EMQC)
IMF
135 / 201
Induction energy - spherical tensor components
In the spherical tensor formalism, the general polarizability component
α`κ,`0 κ0 =
X h0|Q̂`κ |nihn|Q̂`0 κ0 |0i + h0|Q̂`0 κ0 |nihn|Q̂`κ |0i
∆E0n
n6=0
and the induction energy takes the form
E (2) (ind,B) = −
1 XX B
1X
A A
A
α`κ`0 κ0 V`κ
∆QB
V`0 κ0 = −
`κ` V`κ
2
2
0 0
`κ ` κ
`κ
where ∆QB
`κ` are the induced moments of B
X B
∆QB
α`κ`0 κ0 V`A0 κ0
`κ =
`0 κ0
J. Ángyán (EMQC)
IMF
136 / 201
Truncation of the multipolar induction energy
The multipolar induction energy can be truncated
according to the powers of (1/R)N
does not ensure that the induction energy is negative
according to the maximum rank of the multipole operators (L)
always negative
J. Ángyán (EMQC)
IMF
137 / 201
Distance dependence of the induction energy
Interaction of a spherically symmetric polarizability ααβ = αδαβ with multipoles:
charge
2
1
1 q2 α
1
1 X αRα
E(ind, q) = − qTα ααβ Tβ q = − q 2 Tα Tα α = − q 2
=−
3
3
2
2
2
R R
2 R4
α
dipole
1 µ2 α(3 cos2 θ + 1)
1
E(ind, µ) = − µα Tαβ αββ 0 Tβ 0 α0 µα0 = −
2
2
R6
quadrupole
E(ind, Θ) ∼ R−8
J. Ángyán (EMQC)
IMF
138 / 201
Convergence of the induction energy
The multipole-expanded interaction Hamiltonian of a H-atom + proton system is
»
«n
–
∞ „
X
r
1
1−
Pn (cos θ)
Vmult =
R
R
n=0
The exact second order multipole energy (Dalgarno & Lynn, 1957)
E (2) = −
∞
X
(2n + 2)!(n + 2)
n(n + 1)R(2n+2)
n=1
The ratio of successive terms
lim
n→∞
2n(n + 3)(2n + 3)
=∞
(n + 2)R2
indicates that for any value of R the series is divergent.
J. Ángyán (EMQC)
IMF
139 / 201
Non-additivity of the induction energy
charge-polarizability interaction
1
1 q2
Uqα = − αF 2 = − α 4
2
2 R
two charges of opposite signs: F is
doubled
U{q1 +q2 }α = 4Uqα 6= Uq1 α + Uq2 α
two charges of the same sign: F is zero
U{q1 +q2 }α = 0 6= Uq1 α + Uq2 α
this effect explains the arrangement of
Mg2+ cations (and other alkaline earth
cations) around the polarizable Cl− anions
in crystal and molten phases: induction
effects arising with an angle Mg-Cl-Mg
< 180 effectively reduce the cation-cation
repulsion. If the anion is not large enough
(F−) this phenomenon does not take
place.
J. Ángyán (EMQC)
IMF
140 / 201
Cooperativity of induction
Interaction of polarizable particles enhance the
overall polarization effect.
The induced dipoles p1 and p2 are obtained
from the total local fields
´
`
p1 = α1 F 1 = α1 E + T 12 · p2
`
´
p2 = α2 F 2 = α2 E + T 21 · p1
The solution of this coupled system of
equations:
„
« „ −1
«−1 „
«
p1
α1
−T
E
=
E
p2
−T α−1
2
The effective polarizability is:
„
1
α1
α1 α2 T
1 − T 2 α1 α2
J. Ángyán (EMQC)
α1 α2 T
α2
«
IMF
141 / 201
Part V
Charge fluctuation interactions
J. Ángyán (EMQC)
IMF
142 / 201
Thermally averaged interactions
Thermal average of orientation-dependent
interactions U (Ω), where Ω = (θ, φ)
R
dΩU (Ω)e−U (Ω)/kT
hUqµ i =
R
dΩe−U (Ω)/kT

cosn θ =
2
= U − (U 2 /kT − U /kT ) + . . .
where
Z
dΩU n (Ω) =
J. Ángyán (EMQC)
ZZ
1
,
2k+1
n = 2k + 1;
n = 2k.
cosn φ =
Expand the exponential (U (Ω)/kT 1):
R
dΩ(U (Ω) − U 2 (Ω)/kT + . . .)
R
hUqµ |i ≈
dΩ(1 − U (Ω)/kT + . . .)
`
´`
´
2
= U − U 2 /kT 1 + U /kT
Un =
0,
U n (θ, φ) sin θdθdφ
IMF
sinn φ =
k
1
2
3
4

0,
cos2k θ
1/3
1/5
1/7
1/9
(2k−1)!!
,
2k k!
n = 2k + 1;
n = 2k.
sin2k θ
2/3
8/15
16/35
128/315
cos2k φ
1/2
3/8
5/16
35/128
143 / 201
Charge-dipole interaction
Charge-dipole interaction
Uqµ =
qA µB
cos θ
R2
Thermal averages
qµ
cos θ = 0
R2
2 2
q µ
1 q 2 µ2
=
cos2 θ =
4
R
3 R4
U qµ =
U 2 qµ
Analogous to the charge-polarizability interaction:
hUqµ i = −
J. Ángyán (EMQC)
IMF
1 q 2 µ2
3kT R4
144 / 201
Dipole-dipole (Keesom) interaction
Dipole-dipole interaction
Uµµ = −
´
µA µB `
2 cos θA cos θB − sin θA sin θB cos ϕ
2
R
Thermal average
hUµµ i = −U 2 µµ /kT
´
1 µ2A µ2B `
4 cos2 θA cos2 θB − sin2 θA sin2 θB cos2 ϕ + cross terms
6
kT R
1 µ2A µ2B `
1
1
2
2
1´
2 µ2A µ2B
4× × − × ×
=−
=−
kT R6
3
3
3
3
2
3kT R6
U 2 µµ = −
Keesom forces:
2 µ2A µ2B
3kT R6
Correlation of thermal fluctuations give rise to universally attractive interactions.
hUµµ i = −
J. Ángyán (EMQC)
IMF
145 / 201
London dispersion forces
Edisp = −
1
2π
Z
dω α1 (r1 , r10 |iω) T (r1 , r2 ) α2 (r2 , r20 |iω) T (r20 , r10 )
universally attractive
always attractive and decays as R−6
long-range dynamical correlation
J. Ángyán (EMQC)
IMF
146 / 201
London dispersion forces
Edisp = −
1
2π
Z
dω α1 (r1 , r10 |iω) T (r1 , r2 ) α2 (r2 , r20 |iω) T (r20 , r10 )
universally attractive
always attractive and decays as R−6
long-range dynamical correlation
J. Ángyán (EMQC)
IMF
146 / 201
London dispersion forces
-3
R
Edisp = −
1
2π
Z
dω α1 (r1 , r10 |iω) T (r1 , r2 ) α2 (r2 , r20 |iω) T (r20 , r10 )
universally attractive
always attractive and decays as R−6
long-range dynamical correlation
J. Ángyán (EMQC)
IMF
146 / 201
London dispersion forces
-3
R
Edisp = −
1
2π
Z
dω α1 (r1 , r10 |iω) T (r1 , r2 ) α2 (r2 , r20 |iω) T (r20 , r10 )
universally attractive
always attractive and decays as R−6
long-range dynamical correlation
J. Ángyán (EMQC)
IMF
146 / 201
London dispersion forces
-3
R
R
Edisp = −
1
2π
Z
-3
dω α1 (r1 , r10 |iω) T (r1 , r2 ) α2 (r2 , r20 |iω) T (r20 , r10 )
universally attractive
always attractive and decays as R−6
long-range dynamical correlation
J. Ángyán (EMQC)
IMF
146 / 201
Long-range intermolecular RSPT
The solution of the Schrödinger equation for the non-interacting complex
“
”
Ĥ A + Ĥ B ϕk = E0 ϕk
can be obtained from the solutions of the isolated subsystem Schrödinger equations
Ĥ A ψaA = EaA ψaA
Ĥ
X
=
X
i∈X
X Zα
T̂i −
riα
α∈X
Ĥ B ψbB = EbB ψbB
!
+
X
i,j∈X
i<j
X Zα Z α 0
1
+
rij
Rαα0
a,b∈X
α<α0
as simple products (not antisymmetric for intermolecular electron exchange) of the
monomer wave functions
ϕk = ψaA ψbB
and the eigenvalues are the sum of monomer eigenvalues
Ek = EaA + EbB
J. Ángyán (EMQC)
IMF
147 / 201
Partition of the Hamiltonian
Since the subsystems are distinguishable (preserve their identities), each of the
N = NA + NB electrons and M = MA + MB nuclei can be assigned to one of the
subsystems. Subtracting from the total Hamiltonian
!
MA +MB
NA +NB
NA +NB
MA +MB
X Zα
X
X Zα Z α 0
1 X 1
T̂i −
Ĥ =
+
+
r
2
r
Rαα0
iα
ij
α=1
i=1
i,j=1
α,β=1
the sum of monomer Hamiltonians one obtains the operator of the intermolecular
interaction
X X Zα Zβ X X Zβ
X X Za
XX 1
V̂ =
−
−
+
Rαβ
riβ α∈A j∈B rαj i∈A j∈B rij
α∈A
i∈A
β∈B
β∈B
In the absence of any “natural” perturbation parameter, we shall consider an adiabatic
switching of the interaction between the subsystems:
Ĥ(λ) = Ĥ A + Ĥ B + λV̂
J. Ángyán (EMQC)
IMF
148 / 201
Longuet-Higgins form of the interaction operator
The interaction operator can be written in a more compact and separable form, based on
the charge density operator, defined as
X
X
%̂X (r) =
Zα δ(r − Rα ) −
δ(r − r i )
α∈X
i∈X
with the matrix elements
hψa |%̂A (r)|ψa0 i = δaa0
X
Zα δ(r − Rα ) − P (aa0 |r, r 0 )
α∈X
where P (aa0 |r, r 0 ) is an element one the one particle density matrix.
J. Ángyán (EMQC)
IMF
149 / 201
The state charge density
%aa (r) =
X
Zα δ(r − Rα ) − P (aa|r, r)
α∈X
contains the contribution of both electrons and nuclei.
Transition charge density
%aa0 (r) = −P (aa0 |r, r)
Using %̂(r) and the Coulomb-kernel function, T (r, r 0 ) = |r − r 0 |, the interaction
operator is
Z
Z
V̂ = dr dr 0 %̂A (r)T (r, r 0 )%̂B (r 0 )
By a straightforward generalization of the Einstein summation convention
B
V̂ = %̂A
r Tr,r 0 %̂r 0
J. Ángyán (EMQC)
IMF
150 / 201
The polarization approximation
Direct application of the RSPT to the the above problem with the eigenfunction of
Ĥ0 = HˆA + ĤB as zeroth order wave function:
(n)
(n−1)
Epol = hϕ0 |V̂ |ϕpol
(n)
(n−1)
ϕpol = −R̂0 V̂ ϕpol
−
n−1
X
i
(n−k)
∆E (k) R̂0 ϕpol
k=1
This is called the polarization approximation (antisymmetry requirement neglected).
J. Ángyán (EMQC)
IMF
151 / 201
First order: electrostatic energy
The first-order interaction energy in this approximation is
(1)
Epol = hψ0A ψ0B |V̂ |ψ0A ψ0B i
Using the Longuet-Higgins operator
Z
Z
(1)
Epol = dr dr 0 hψ A |%̂A (r)|ψ A iT (r, r 0 )hψ B |%̂B (r 0 )|ψ B i
it is easy to see that it is the Coulomb interaction of the charge densities of the two
subsystems.
Z
Z
(1)
0 B
0
Epol = dr dr 0 %A
00 (r)T (r, r )%00 (r )
Electrostatic potential of the subsystems
Z
0
V A (r) = dr 0 T (r, r 0 )%A
00 (r )
V B (r) =
Z
0
dr 0 T (r, r 0 )%B
00 (r )
Alternative form of the first order interaction energy
Z
Z
(1)
B
A
Epol = dr%A
(r)V
(r)
=
dr%B
00
00 (r)V (r)
J. Ángyán (EMQC)
IMF
152 / 201
Second order energy in the polarization approximation
The second-order interaction energy
(2)
Epol = −
X |hψ0A ψ0B |V̂ |ψaA ψ B i|2
b
A
B
∆E
+
∆E
0a
0b
ab6=00
can be written as a sum of three terms, each having a different physical meaning.
Epol = −
X |hψ0A ψ0B |V̂ |ψ0A ψ B i|2
b
B
∆E
0b
b6=0
induction A → B
−
X |hψ0A ψ0B |V̂ |ψaA ψ0B i|2
A
∆E0a
a6=0
induction A ← B
−
X |hψ0A ψ0B |V̂ |ψaA ψ B i|2
b
A
B
∆E
+
∆E
0a
0b
a6=0
dispersion
(2)
b6=0
These terms correspond to the following decomposition of the reduced resolvent
R̂0 =
X
a,b
(ab)6=(00)
|ψaA ψbB ihψaA ψbB |
= R0A OA + R0B OB + R0AB = R0 (ind) + R0 (disp)
EaA − E0A + EaB − E0B
J. X
Ángyán (EMQC)
X
X
IMF
153 / 201
Induction energy
∆E (2) (ind, A ← B) = −hψ0A ψ0B |V̂ R̂0A ÔB V̂ |ψ0A ψ0B i
1 B
A
B
A
A
B
= −VrB h%A
r R̂0 %r 0 iVr = − Vr K(%r , %r 0 )Vr
2
0
A
The K(%A
r , %r 0 ) = α(r, r ; ω = 0) charge density linear response function (susceptibility)
is a kind of generalized polarizability function, which gives the induced charge density in
a static external potential
Z
∆%A (r) = dr 0 α(r, r 0 ; ω = 0)V B (r 0 )
The sum-over-states definition of the charge density susceptibility at the ω frequency is
α(r, r 0 ; ω) =
1 X [h0|%̂(r)|aih0|%̂(r 0 )|ai + h0|%̂(r 0 )|aih0|%̂(r)|ai] ω0a
2
~
ω0a
− ω2
a6=0
J. Ángyán (EMQC)
IMF
154 / 201
The induction energy can be regarded as the stabilization energy due to interaction of
the induced charge density with the electrostatic potential of the partner
Z
(2)
∆Estab = − dr∆%A (r)V B (r)
partially compensated by the (positive) deformation energy, spent to polarize the charge
distribution
1
(2)
(2)
∆Edef = − ∆Estab
2
Which means that the induction energy
(2)
(2)
∆E (2) (ind, A ← B) = ∆Estab + ∆Edef =
1
(2)
∆Estab
2
is the half of the stabilization energy (in the linear response approximation).
Note: do not mix up the terminology “polarization” and “induction”...
J. Ángyán (EMQC)
IMF
155 / 201
Dispersion energy
∆E (2) (disp) = −hψ0A ψ0B |V̂ R̂0AB V̂ |ψ0A ψ0B i
ZZZZ
A
0 B
B
0
1 X X %A
0a (r)%0a (r )%0b (s)%0b (s )
=
T (r, s)T (r 0 , s0 )
A
B
~
ω0a + ω0b
a6=0 b6=0
We can transform the double sum according to subsystems using the following identity
Z
1
2 ∞
x
y
=
dω
x+y
π 0 x2 + ω 2 y 2 + ω 2
which leads to a separable form at the expense of an additional integral in the frequency
domain
ZZZZ
∆E (2) (disp) =
T (r, s)T (r 0 , s0 )×
Z
A A
0 X B B
0
%0a (r)%A
ω0b %0b (s)%B
2
1 X ω0a
0a (r )
0b (s )
dω
A2
B2
π
~
ω0a
+ ω2
ω0b
+ ω2
b6=0
a6=0
J. Ángyán (EMQC)
IMF
156 / 201
Dispersion energy
We can recognize in the two separate sums the dynamic charge density susceptibilities at
imaginary frequencies of both subsystems, i.e.
α(r, r 0 ; iω) =
1 X [h0|%̂(r)|aih0|%̂(r 0 )|ai + h0|%̂(r 0 )|aih0|%̂(r)|ai] ω0a
2
~
ω0a
+ ω2
a6=0
Final expression of the dispersion energy (Casimir-Polder)
Z ∞
ZZZZ
~
dω
drdr 0 dsds0 ×
∆E (2) (disp) =
2π 0
× αA (r, r 0 ; iω)T (r 0 , s0 )αB (s, s0 ; iω)T (r, s)
Corresponds to the Coulomb correlation of fluctuating charge densities of the two
systems. (Cf. fluctuation-dissipation theorem).
J. Ángyán (EMQC)
IMF
157 / 201
Summary of second order terms
B
%A
r Trs %s
electrostatic
J. Ángyán (EMQC)
B
A
B
A
%A
r Trs αss0 Ts0 r0 %r0 Trs αss0 Ts0 r0 αr0 r
induction
IMF
dispersion
158 / 201
Third order induction energy
Third order energy
∆E (3) = ϕ0 |V̂ R̂0 (V̂ − hV̂ i)R̂0 V̂ |ϕ0 i
Decomposition of the reduced resolvent
R0 (ind) = R0A OB + OA R0B
R0 (disp) = R0AB
Pure induction part of the third order energy can be expanded
h
i
∆E (3) (ind) = hϕ0 |V̂ R̂0 (ind) V̂ − hV̂ i R̂0 (ind)V̂ |ϕ0 i
= Trs Tr0 s0 Tr00 s00 ×
h
i
B A B
A B
A B
A B
A B
hϕA
0 ϕ0 |%̂r %̂s R̂0 (ind) %̂r %̂s − h%̂r 0 %̂s0 i R̂0 (ind) %̂r 00 %̂s00 |ϕ0 ϕ0 i
J. Ángyán (EMQC)
IMF
159 / 201
Two kinds of terms are obtained
hyperpolarizability term (nonlinear response), e.g.
A
A
B B
B
B
B B
Trs Tr0 s0 Tr00 s00 h%̂A
r ih%̂r 0 ih%̂r 00 i h%̂s R̂0 (%̂s0 − h%̂s0 i)R̂0 %̂s00 i
|
{z
}
1 β B (s,s0 ,s00 )
6
iterated linear response terms, e.g.
B B B
A A A
B
Trs Tr0 s0 Tr00 s00 h%̂A
r i h%̂s R̂0 %̂s0 i h%̂r 0 R̂0 %̂r 00 ih%̂s00 i
{z
}
| {z } |
1 αB (s,s0 )
2
1 αA (r 0 ,r 00 )
2
Graphical representation of the iterated linear response terms
J. Ángyán (EMQC)
IMF
160 / 201
Analogous terms appear in higher order terms, that can be iterated up to self-consistency
J. Ángyán (EMQC)
IMF
161 / 201
The Hamiltonian operator of a ternary complex
ĤA + ĤB + ĤC + V̂AB + V̂AC + V̂BC
is "additive".
First order energy is strictly additive
(1)
∆EABC = hψ A ψ B ψ C |V̂AB + V̂AC + V̂BC |ψ A ψ B ψ C i
= hψ A ψ B |V̂AB |ψ A ψ B ihψ C |ψ C i+
+ hψ A ψ C |V̂AC |ψ A ψ C ihψ B |ψ B i+
+ hψ B ψ C |V̂BC |ψ B ψ C ihψ A |ψ A i
(2)
(2)
(2)
= ∆EAB + ∆EAC + ∆EBC
Second order energy
(2)
∆EABC = hψ A ψ B ψ C |(V̂AB + V̂AC + V̂BC )R̂0 (V̂AB + V̂AC + V̂BC )|ψ A ψ B ψ C i
The resolvent can be decomposed as
R̂0 = R̂0ABC
+R̂0AB ÔC + R̂0BC ÔA + R̂0CA ÔB
+R̂0A ÔB ÔC
J. Ángyán (EMQC)
+
R̂0B ÔC ÔA
+
R̂0C ÔA ÔB
IMF
2-body dispersion
induction
162 / 201
Three types of contributions according to the interaction operators
"Diagonal" term
hψ A ψ B ψ C |V̂AB R̂0 V̂AB |ψ A ψ B ψ C i =
hψ A ψ B |V̂AB hψ C |R̂0 |ψ C iV̂AB |ψ A ψ B i =
(2)
hψ A ψ B |V̂AB (R̂0AB + R̂0A ÔB + R̂0B ÔA )V̂AB |ψ A ψ B i = ∆EAB
"Off-diagonal" term
hψ A ψ B ψ C |V̂AB R̂0 V̂AC |ψ A ψ B ψ C i =
hψ A ψ B |V̂AB hψ C |R̂0 |ψ B iV̂AC |ψ A ψ C i =
hψ A ψ B |V̂AB |ψ B iR̂0A hψ C |V̂AC |ψ A ψ C i =
A A A
C
Trs Tr0 s0 %B
s h%̂r R̂0 %̂r 0 i%s0
non-additive 3-body induction interaction.
J. Ángyán (EMQC)
IMF
163 / 201
London dispersion energy
Dispersion interaction energy in spherical tensor formalism
XX X X
E (2) (disp) = −
a6=0 b6=0 `A mA `B mB
×
B
A
B
h00|Q̂A
`A mA T`A mA ,`B mB Q̂`B mB |abihab|Q̂`0 m0 T`0A m0A ,`0B m0B Q̂`0 m0 |00i
A A
B B
A
B
∆E0a
+ ∆E0b
Applying the Casimir-Polder method
2
T` m ,` m T 0 0 0 0 ×
~π A A B B `A mA ,`B mB
A
A
B
B
∞ h0|Q̂
∞
X
`A mA |aiha|Q̂`0 m0 |0iω0a X h0|Q̂`B mB |bihb|Q̂`0
E (2) (disp) = −
Z
×
dω
A
a6=0
J. Ángyán (EMQC)
2
ω0a
+
A
B
ω2
b6=0
IMF
2
ω0b
+
m0B |0iω0b
ω2
164 / 201
Dynamic (frequency-dependent) multipole polarizabilities in molecule-fixed frame
α`m,`0 m0 (ω) =
X 2ω0n h0|Q̂`m |aiha|Q̂`0 m0 |0i
2
ω0a
− ω2
n6=0
related to the charge density susceptibility
ZZ
0
0
α`m,` m (ω) =
drdr 0 R`m (r)α(r, r 0 |ω)R`0 m0 (r 0 )
Dispersion energy
E (2) (disp) = −
J. Ángyán (EMQC)
X
0
T`A mA ,`B mB T`0A m0A ,`0B m0B X`AB
A mA `B mB `
A
IMF
m0A ,`0B m0B
165 / 201
The Casimir-Polder or dispersion integrals are defined as
Z
~
0 m0 ,`0 =
X`AB
dωα`AA mA ,`0 m0 (iω)α`BB mB ,`0 m0 (iω)
m
`
m
`
A A B B A A B
A A
B B
2π
The dispersion integrals can be calculated by numerical quadrature as
X AB =
M
~ X
w(ωj )αA (iωj )αB (iωj )
2π j=1
With a Gauss-Chebyshev quadrature scheme the grid points are chosen as
„
«
2j − 1
ωj = cot π
4M
and the weights
w(ωj ) =
2π
4M sin2 (π(2j − 1)/4M )
Typically, with 5 and 7 grid points one has an accuracy of 0.1 %.
J. Ángyán (EMQC)
IMF
166 / 201
Numerically more efficient procedure (for high-rank calculations) is to contract first the
polarizabilities with the interaction tensors (in local frame) and perform the numerical
integration afterwards (Hättig, 1996).
In this form the interaction tensors and X AB are both reducible: they transform
according to the double and quadruple product group of SO(3). In terms of irreducible
tensors, the dispersion coefficients are of the form (Wormer)
X X
BL
0
0
0
0 · factor
C`LA`L
X`AB
0 ` `0 =
A mA `B mB ` m ,` m
A A B B
A
mA m0A mB m0B
A
B
B
The algebraic factor depends on the Wigner 3j and 9j coefficients. These coefficients
are coupled to the following form
CnLA LB L
(n = `A + `B + `0A + `0B + 2)
For atoms in S-state, for example,
(2)
Edisp = −
∞
X
C2n R−2n
n=3
C2n =
n−2
X
C(`; n − k − 1)
`=1
C(`; `0 ) =
J. Ángyán (EMQC)
(2` + 2`0 )! 1
(2`)!(2`0 )! 2π
IMF
Z
dωα`A (iω)α`B0 (iω)
167 / 201
The dispersion integral depends on the properties of the individual molecules and
independent of the intermolecular geometry. The complete expression can be expressed
in terms of irreducible spherical tensor components.
dipole-dipole leading term R−3 R−3 ∼ R−6
dipole-quadrupole would be R−3 R−4 ∼ R−7 ,
after averaging over all orientations, it gives zero
quadrupole-quadrupole term R−4 R−4 ∼ R−8
dipole-octopole and quadrupole-qudrupole R−10
J. Ángyán (EMQC)
IMF
168 / 201
Dipolar dispersion energy
The leading multipolar term in the dispersion interaction energy
E (2) (disp) = −
B
A
B
X X h00|µ̂A
α Tαβ µ̂β |abihab|µ̂γ Tγδ µ̂δ |00i
A
B
∆E0a + ∆E0b
a6=0 b6=0
Casimir-Polder formula
E (2) (disp) = −Tαβ Tγδ
2
~π
Z
dω
∞
∞ h0|µ̂B |bihb|µ̂B |0iω
A
X
X
h0|µ̂A
0b
α |aiha|µ̂γ |0iω0a
β
δ
2 + ω2
ω0a
a6=0
b6=0
2 + ω2
ω0b
Unsöld approximation
E (2) (disp) = −Tαβ Tγδ
J. Ángyán (EMQC)
∞ X
∞
A ∆E B
X
∆E0a
0b
A
∆E0a
a6=0 b6=0
+
IMF
B
∆E0b
B
B
A
h0|µ̂A
α |aiha|µ̂γ |0i h0|µ̂β |bihb|µ̂δ |0i
A
ω0a
B
ω0b
169 / 201
In order to factor this latter expression, we use the identity
A
B
∆E0a
∆E0b
UA UB
=
(1 + ∆ab )
A
B
UA + UB
∆E0a + ∆E0b
with
∆ab =
A
B
1/UA − 1/E0a
+ 1/UB − 1/E0b
A
B
1/E0a + 1/E0b
that can be made negligibly small by choosing appropriate average excitation energies
UA and UB
UA UB
A
B
E (2) (disp) ≈ −
Tαβ Tγδ ααγ
αβδ
4(UA + UB )
J. Ángyán (EMQC)
IMF
170 / 201
In both expressions we can separate the orientation-independent spherically averaged and
various orientation-dependent components, by using the decomposition of the
polarizabilities to irreducible parts. The spherically averaged component becomes in both
cases
6
Tαβ Tγδ αA δαγ αB δβδ = αA αB Tαβ Tαβ = αA αB 6
R
leading to the general expression
E (2) (disp) ≈ −
C6
R6
with the C6 coefficient
Z
C6 = 3~
C6 ≈
J. Ángyán (EMQC)
dωαA (iω)αB (iω)
3UA UB
αA αB
2(UA + UB )
IMF
(Casimir-Polder)
(London)
171 / 201
Experimental oscillator strength distributions can be used to determine “experimental”
C6 coefficients.
Roughly proportional to the square of the polarizability/volume.
Some typical values
system
H· · · H
He· · · He
Ne· · · Ne
Ar· · · Ar
Kr· · · Kr
Xe· · · Xe
C6
6.5
1.46
6.6
64.3
133
286
C8
124.4
13.9
57
1130
2500
C10
1135
182
700
25000
60000
Combining rules can be deduced from the London-formula
q
C6AB ≈ C6AA C6BB
J. Ángyán (EMQC)
IMF
172 / 201
Approximate dispersion energy
The average excitation energy of the London formula is an empirical parameter, either
the first ionization potential (quite bad) or the first excitation energy (somewhat better)
is used.
Similar expressions can be derived from the Casimir-Polder expression, by considering
some general properties of the average dynamic dipole-dipole polarizabilities
α(iω) =
1 X 2ω0k |h0|x̂|ki|2
2
~
ω0k
+ ω2
k6=0
We are looking for the simplest, one-term approximation in the form
α(iω) ≈
ω2
·a
ω2 + ω2
Parameters a and ω will be found from the asymptotic behaviour of α(iω).
J. Ángyán (EMQC)
IMF
173 / 201
For ω = 0 one gets the static polarizability, a = α(0).
For ω → ∞ one gets the Thomas-Reiche-Kuhn sum rule, the number of electrons
α(iω) →
1
X
~2 ω 2
n6=0
2∆E0n x20n =
n
~2 ω 2
In this limit we have
a
n
= 2 2
~ ω
ω 2 /ω 2
n
ω2 = 2
~ α(0)
r
1
n
ω=
~ α(0)
which leads to the Mavroyannis-Stephen (Slater-Kirkwood) approximation
C6 ≈
J. Ángyán (EMQC)
3αA αB
+ (αB /nB )1/2
(αA /nA )1/2
IMF
174 / 201
Take another, equivalent form of the dynamic polarizability
α(ω) = α+ (ω) + α+ (−ω) =
1 X |r on |2
1 X |r on |2
+
3~
ω0n + ω
3~
ω0n − ω
n6=0
For ω = 0
α+ (ω) =
n6=0
1
α(0)
2
For ω → ∞
~ωα+ (ω) →
1X
1ˆ
1
|r 0n |2 = h0|r 2 |0i − h0|r|0i2 = (∆r)2
3
3
3
n6=0
Considering a one-term approximation
α+ (ω) =
J. Ángyán (EMQC)
a0
~(ω + ω)
IMF
0
175 / 201
Taking the limiting cases one obtains
a0 =
1
α(0)
2
ω=
2 (∆r)2
3~ α
and we get the Salem-Tang-Karplus approximation
C6 =
αA αB
αA /(∆r A )2 + αB (∆r B )2
For dimers it is identical to the Alexander upper bound
C6 ≤
J. Ángyán (EMQC)
3
1
S(−2)S(−1) = α(∆r B )2
4
2
IMF
176 / 201
Solutions of the H + H dispersion problem
The multipolar interaction Hamiltonian for two H atoms lying on the z axis, separated by
a distance R0 is
V̂ = − 2[R0−3 ξ1 ξ2 cos θ1 cos θ2
+ βξ1 ξ22 cos θ1 (3 cos2 θ2 − 1)
+ γξ12 ξ22 (3 cos2 θ1 − 1)(3 cos2 θ2 − 1) + . . .
p
√
with polar
ξ1,2 = r1,2 , α = ( 6/2)R0−3 , β = ( (30)/4)R0−4 and
√ coordinates
γ = ( 70/8)R−5 .
By direct summation over the excited states, Eisenchitz and London obtained for the
dipolar dispersion energy
E (2) = −
12 X
„
R06 n,m
1−
∆E z 2 ∆E z 2
«„ 0n 0n «„0m 0m
1
1 − m12
2 − n12 −
n2
1
m2
«
It is difficult to make converge this expression, because of the discrete-continuum matrix
elements. The best value is C6 = 6.47.
J. Ángyán (EMQC)
IMF
177 / 201
The difficulties of the sum-over-states solution can be avoided by solving directly for the
first-order wave function using the Ansatz proposed by Slater and Kirkwood,
ψ(r 1 , r 2 ) = ψ0 (r1 , r2 )[1 + φ(r 1 , r 2 )]
with the ground state unperturbed wave function of the dimer, ψ0 (r1 , r2 ).
two-particle correlation function, φ, satisfies the differential equation
The
1 2
∇ φ + (∇ ln ψ0 ) · ∇φ) − v = 0
2
where v can be one of the multipolar terms of the interaction Hamiltonian. Taking the
correlation function in the form
vR(ξ, ξ 0 )
φ=
E0
leads to a differential equation for R(ξ, ξ 0 ).
Slater and Kirkwood (1931) obtained an approximate solution, leading to C6 = 6.23.
Pauling and Beach (1935) used special orbitals to construct the Hamiltonian matrix and
obtained C6 = 6.49903, C8 = 124.399 and C10 = 1135.21. Recent exact solutions
obtained by Choy (P.R.A. 62 (2000) 012506) using orthogonal polynomials, confirm
these values.
J. Ángyán (EMQC)
IMF
178 / 201
Part VI
Short-range forces and their origin
J. Ángyán (EMQC)
IMF
179 / 201
Short-range forces and their origin
Penetration effects
Overlap repulsion – failure of the polarization approximation of PT
Damping effects
J. Ángyán (EMQC)
IMF
180 / 201
Penetration effects: potential in the overlap region
Take a charge distribution
%(r) = f (ω)σ(r)
with a radial part, which vanishes only at r → ∞. The general expression of the
potential is
V (R) =
«Z ∞
Z
∞ „
l
l
X
X
4π
r<
∗
drr2 l+1
σ(r)
dωYlm (ω)Ylm
(Ω)
2l + 1
r>
0
l=0
m=−l
The radial integral should be divided in two parts
Z R
Z ∞
rl
Rl
I(R) =
drr2 l+1 σ(r) +
drr2 l+1 σ(r)
R
r
0
R
J. Ángyán (EMQC)
IMF
181 / 201
Potential in the overlap region
For instance, take an exponential function (STO)
σ(r) = rn e−ar
Use the integration rules
∞
Z
drrn e−ar =
0
Z
n!
an+1
∞
R
drrn e−ar =
n
n! X (aR)k −ar
e
an+1
k!
k=0
The radial integral
I(R) =
»
n+1−l
n+2+l
X (aR)k −ar –
X (aR)k −ar
1
n!
2l+1
·
1
−
e
+
R
e
an+1 Rl+1
k!
k!
k=0
k=0
The potential of a 1s function (l = 0, n = 0)
α3
σ(r) = 3 e−2αr
π
»
–
1
−2αR
V(1s)2 (R) =
1 − (1 + αR)e
R
In general, the potential of a charge distribution can be separated to a multipolar and
penetration component.
J. Ángyán (EMQC)
IMF
182 / 201
Exact multipolar part of the potential
In quantum chemistry, molecular charge densities are usually developed on Gaussian basis
functions
X
X
%(r) =
Zα δ(r − R) −
Pµν χ∗µ (r)χν (r)
µν
For this case, the multipolar potential can be exactly evaluated.
Let us consider the χν (r) functions as primitive Gaussian functions of the general form
χ(r) = R(r)Ylm (θ, φ)
J. Ángyán (EMQC)
IMF
183 / 201
The electronic contribution to the charge density is the sum of two types of terms:
One-center densities, both basis functions are on the same atomic center
%µν (r) = Rµ (r)Rν (r)Ylµ mµ (ω)Ylν mν (ω)
Apply the sum rule (Clebsch-Gordan series)
X m̄µ mν m
Ylµ mµ (ω)Ylν mν (ω) =
Klµ lν l
Ylm (ω)
lm
with
|lµ − lν | < l < lµ + lν
and
− mµ + mν + m = 0
The one-center densities can be written as a finite series of multipolar potentials
(maximal order is lµ + lν ) around the natural expansion centre.
Two-center densities can be handled in an analogous way, by using the Gaussian
addition theorem, which leads to the natural expansion centre, the “barycenter”
Rµν =
αµ Rµ + αν Rν
αµ + αν
The multipole expansion wrt to the barycenter is finite, with the highest rank of
multipole of lµ + lν .
J. Ángyán (EMQC)
IMF
184 / 201
Beyond the polarization approximation
The RSPT applied to intermolecular interaction is often called polarization
approximation, since it neglects effects that are related to the antisymmetry of the total
wave function. In the following we shall discuss the failure of the polarisation
approximation and one of the possible methods to remedy this situation.
J. Ángyán (EMQC)
IMF
185 / 201
H atom + proton system
Zeroth order Hamiltonian and wave function and the perturbation potential are
1
1
H0 = − ∆ −
2
rA
ϕ0 = 1sA
V̂ = −
1
1
+
rB
R
At R ≤ 0.05 a.u. (limit of united atoms) RSPT yields
Eel (R) = −2 +
8 2 16 3
R +
R + O(R4 )
3
3
For very large intermolecular distances, R > 12 a.u., the total energy can be
approximated as
2.25
1
7.5
E(R) = Eel +
= − 4 − 6 + O(R−7 )
R
R
R
J. Ángyán (EMQC)
IMF
186 / 201
Convergence of the polarization approximation for H+
2
0
∆(n) = 100 @1 −
n
1
2
3
4
5
6
8
12
16
20
30
38
1
Pn
(k)
k=1 ∆E
A
∆Eexact
R = 3.0
∆E n
∆(n)
3.3050(-03)
10.26
-2.5686(-02)
71.14
-1.1074(-02)
56.87
-9.8501(-03)
44.17
-8.0099(-03)
33.84
-6.7955(-03)
25.08
-4.5279(-03)
12.03
-1.3808(-03)
-0.41
+2.3496(-05)
-2.40
+3.0523(-05)
-1.07
-3.6059(-05)
0.30
-1.3906(-05)
-0.07
R = 12.5
∆E n
∆(n)
1.5000(-11)
100.000
-9.4250(-05)
27.809
-1.2599(-06)
26.844
-1.5711(-07)
26.723
-1.5409(-08)
26.711
-3.8934(-09)
26.708
-1.5287(-09)
26.706
-1.3304(-09)
26.702
-1.3244(-09)
26.698
-1.3241(-09)
26.694
-1.3241(-09)
26.683
-1.3241(-09)
26.675
Chalasinski et al. IJQC 11 (1977) 247
At large R the exact wave function (with intermediate normalization) is
ψ = ϕA + ϕB ≈ 1sA + 1sB
i.e. the modification brought by the perturbation V̂ is not small at all.
J. Ángyán (EMQC)
IMF
187 / 201
ϕ0
ψ − ϕ0
−1/rA
-10
-5
−1/rB
0
5
10
R (a.u.)
near A
V̂ is small, therefore ϕ0 = 1sA is good approximation
near B
V̂ is big, therefore ϕ0 = 1sA is very bad approximation.
Expand the ψB = 1sB function by the eigenfunctions of A-centered basis
X
ψB =
hψB |ak iak
k
At larger R bad convergence, since {ak } vanish exponentially at B.
∆E =
J. Ángyán (EMQC)
hϕ0 |V̂ ϕA i
rapid convergence
+
IMF
hϕ0 |V̂ ϕA i
obtained only at inf. order
188 / 201
Example of two H atoms
Interaction of two H atoms
V̂ = −
1
1
1
−
+
r1B
r2A
r12
Unperturbed wave function
ϕ0 = a0 (1)b0 (2)
The RSPT charge density is a simple superposition of the 1s densities,
%(r) = %1s (r − x) + %1s (r + x)
In case of overlapping electron densities the antisymmetrized (triplet) wave function is
1
ψ0 = p
[a0 (1)b0 (2) − a0 (2)b0 (1)]
2(1 − S 2 )
and the symmetry-adapted charge density is
%(r) =
J. Ángyán (EMQC)
1
[%1s (r − x) + %1s (r + x) − 2S1s(r − x)1s(r + x)]
1 − S2
IMF
189 / 201
Density
depleted between nuclei
%(r = 0) =
˜
2
1 ˆ
2%1s (x) − 2S%1s (x) =
%1s (x) < 2%1s (x)
1 − S2
1+S
enhanced outside the nuclei, e.g. at r = 2x
%(2x) ≈
˜
1 ˆ
1
%1s (x) + %1s (3x) ≈
%1s (x) > %1s (x)
1 − S2
1 − S2
The Hellmann-Feynmann forces will be repulsive.
electron tunnels in both directions ⇒ exchange tunneling
due to r112 the electronic motions become correlated ⇒ dispersion
In many-electron systems the RSPT ground state violates Pauli-principle ⇒
antisymmetrized product would be a better ψ0 , but it is not eigenfunction of Ĥ0 .
J. Ángyán (EMQC)
IMF
190 / 201
U(R)
Behaviour of the RSPT interaction energy
∆E(R)
∆EnRS (R)
At short distances RSPT (polarization approximation) misses the repulsion: no
acceptable minimum
(RS)
At large distance ∆E(R) − ∆En (R) vanishes exponentially, therefore the
polarization approximation is acceptable.
J. Ángyán (EMQC)
IMF
191 / 201
Symmetry failure
Why is the polarization approximation wrong at short and intermediate distances?
Antisymmetrizer commutes with total Hamiltonian
h
i
Â, (Ĥ + λV̂ ) = 0
but neither with Ĥ0 , nor with V̂
[Â, Ĥ0 ] 6= 0
[Â, V̂ ] 6= 0
It follows from the commutation rules that
[Â, Ĥ0 ] = −λ[Â, V̂ ]
i.e. non-zero zeroth-order and non-zero first order quantities are equal to each
other: no unambiguous definition of the perturbation order.
J. Ángyán (EMQC)
IMF
192 / 201
Symmetry failure
Antisymmetrized product states of the subsystems
B
ÂϕA
a ϕb
form a non-orthogonal set. A hermitian operator has always a orthogonal
eigenfunctions. There can be no Hermitian Hamiltonian associated with these
zeroth-order wave functions.
Symmetry dilemma: Zeroth order Hamiltonian Ĥ(λ = 0) = ĤA + ĤB has lower
symmetry than Ĥ(λ = 1)!
N
ĤA + ĤB SNA
SNB
Ĥ
SNA +NB
The direct product the symmetric groups of rank NA and NB is a subgroup of
SNA +NB .
Consequence: the polarization approximation is only asymptotically convergent, i.e. at a
given intermolecular distance and orientation one cannot obtain the exact energy as a
power series of the λ perturbational parameter. In the practice, PA is divergent at higher
than 2nd order.
J. Ángyán (EMQC)
IMF
193 / 201
Claverie’s analysis
The lowest eigenfunction of Ĥ(λ = 0)
is a “bosonic” state, which is connected
with the physically forbidden mathematical
ground state of Ĥ(λ = 1), while the physical ground state of Ĥ(λ = 1) is connected
with an excited state of Ĥ(λ = 0).
Difference of p.g.s. and m.g.s. decreases exponentially with R.
Since the m.g.s. becomes repulsive only at
chemical bond distances, polarization approximation misses the repulsive effects.
Two possible strategies:
abandon the usual partition and find a Ĥ0 for which Âϕ0 is eigenfunction
maintain the partition, but reject RSPT
J. Ángyán (EMQC)
IMF
194 / 201
Symmetrized RS perturbation theory
Let the (NA + NB )-electron antisymmetrizer
1
 = p
(NA + NB )!
X
(−1)P P
P ∈SN +N
A
B
and set the following zeroth order approximation to the wave function, satisfying the
intermediate normalization
N0 = hϕ0 |Âϕ0 i−1
ψ0 = N0 Âϕ0
First iteration in the energy
∆E1 = N0 hϕ0 |V̂ Âϕ0 i
First iteration in the wave function
ψ1SRS = ϕ0 + N0 R̂0 (∆E1 − V̂ )Âϕ0
which is to be compared with the RSPT (polarization approximation, PA) result
ψ1P A = ϕ0 − R̂0 V̂ ϕ0
where the second term vanishes as R → ∞.
J. Ángyán (EMQC)
IMF
195 / 201
Separation of the V̂ -dependent component of the first wave function iteration
[Ĥ0 + V̂ , Â] = 0
−V̂ Â = Ĥ0 Â − Â(Ĥ0 + V̂ )
(∆E1 − V̂ ) = Â∆E1 + Ĥ0  − ÂĤ0 − ÂV̂
(∆E1 − V̂ )Â = Â(∆E1 − V̂ ) + [Ĥ0 − E0 , Â]
R̂0 [Ĥ0 − E0 , Â]ϕ0 = Âϕ0 − hϕ0 |Âϕ0 iϕ0
N0 R̂0 (∆E1 − V̂ )Âϕ0 = N0 Âϕ0 − N0 hϕ0 |Âϕ0 iϕ0 + N0 R̂0 Â(∆E1 − V̂ )ϕ0
= N0 Âϕ0 − ϕ0 + ψ (1)
J. Ángyán (EMQC)
IMF
196 / 201
The first iteration of the wave function can be decomposed as
(exch)
ψ1 = ϕ0 + ψ0
+ ψ (1)
i.e. a large exchange correction
(exch)
ψ0
= N0 Âϕ0 − ϕ0
and a small V̂ -dependent correction,
ψ (1) = N0 R̂0 Â(∆E1 − V̂ )ϕ0
The second energy iteration gives
∆E2 = hϕ0 |V̂ ψ1 i = E (1) + E (2)
with
E (2) = N0 hϕ0 |V̂ R̂0 Â(∆E1 − V̂ )ϕ0 i
and due to the hermiticity of V̂ and Â
(1)
E (2) = N0 hϕpol |Â(V̂ − ∆E1 )ϕ0 i
J. Ángyán (EMQC)
IMF
197 / 201
Separation of exchange contributions
At any order of the SRS perturbation theory, the energy correction can be rigorously
decomposed as a sum of exponentially decaying exchange component and the
polarization component
(n)
(n)
E (n) = Epol + Eexch
This can be done using the decomposition of the total antisymmetrizer as
 =
NA !NB !
ÂA ÂB (1 + P)
(NA + NB )!
where P is the sum of inter-system permutations.
First order exchange energy
(1)
Eexch =
hϕ0 |V̂ Pϕ0 i − hϕ0 |V̂ ϕ0 ihϕ0 |Pϕ0 i
1 + hϕ0 |Pϕ0 i
Second order exchange energy
(1)
(2)
Eexch =
J. Ángyán (EMQC)
(1)
hϕpol |V̂ Pϕ0 i − hϕpol |V̂ ϕ0 ihϕ0 |Pϕ0 i
1 + hϕ0 |Pϕ0 i
IMF
198 / 201
Symmetry adapted perturbation theory (SAPT)
(Jeziorski, Moszynski, Szalewicz and Williams)
Zeroth-order wave Hamiltonian is the sum of isolated molecule Fock operators and the
solutions are expanded in a triple perturbation series
Ĥ = F̂ A + F̂ B + ζ V̂ + λA ŴA + λB ŴB
Consecutive application of the RSPT (polarization approximation) and symmetry
adapted perturbation theory (exchange corrections) leads to the following expression of
the interaction energy:
∞
∞
X
X
(n)
(n)
∆E =
∆Epol +
∆Eexch
n=0
n=0
and both components are developed in the orders of the intramolecular correlation
operator
∞
∞ X
∞
∞ X
X
X
(nij)
(n)
(nij)
(n)
∆Epol =
∆Epol
∆Eexch =
∆Eexch
i=0 j=0
J. Ángyán (EMQC)
i=0 j=0
IMF
199 / 201
SAPT
Symbol
(10)
E
pol
(1n)
E
pol
E
(10)
exch
E
(1n)
exch
Symbol
Name
Description
Electrostatic
Classical electrostatic interaction of unperturbed Hartree-Fock charge distributions
Correlation correction to the electrostatic energy from the nth order intramolecular correlation effects on the charge distributions
Electrostatic: correlation corrections
Exchange (overlap) repulsion
Repulsion of the closed shells: modification of the interaction energy of
Hartree-Fock monomers due to the intermolecular antisymmetrization
Exchange (overlap) repulsion: correlation corrections
Intramolecular correlation correction to closed-shell repulsion
Name
(20)
E
ind
(20)
ind-exch
(20)
E
disp
E
(20)
E
disp-exch
(2n)
E
ind
(2n)
E
disp
Description
Induction energy
Energy arising from the distortion of each molecule in the field of the unperturbed Hartree-Fock charge distribution of the other
Exchange induction
Modification to the induction energy due to antisymmetry effects
Dispersion energy
Energy arising from the correlated fluctuations of the of the unperturbed
Hartree-Fock charge distribution of each molecule
Exchange dispersion
Modification to the dispersion energy due to antisymmetry effects
Induction energy: correlation corrections
Corrections to the induction energy due to intramolecular correlation effects
Dispersion energy: correlation corrections
Corrections to the dispersion energy due to intramolecular correlation effects
J. Ángyán (EMQC)
IMF
200 / 201
SAPT decomposition of the He2 interaction energy
(After: Korona et al. J. Chem. Phys. 106 (1997), 5109)
J. Ángyán (EMQC)
IMF
201 / 201