Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 8: Estimation Chapter 8: Estimation 8-1 a. An unbiased point estimator of the population mean is the sample mean: X i 520.95 X n Results for: Sugar.xls Descriptive Statistics: Weights Variable Weights N 100 Mean 520.95 Median 518.75 TrMean 520.52 Variable Weights Minimum 504.70 Maximum 544.80 Q1 513.80 Q3 527.28 StDev 9.45 b. Evidence of non-normality? Normal Probability Plot .999 .99 Probability .95 .80 .50 .20 .05 .01 .001 505 515 525 535 545 Weights Average: 520.948 StDev: 9.45150 N: 100 Anderson-Darling Normality Test A-Squared: 1.989 P-Value: 0.000 The distribution shows evidence of non-normality c. The unbiased point estimate of the variance of the sample mean: s 2 (9.45)2 Var ( X ) .8930 n 100 SE Mean 0.95 113 114 8-2 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition a. Evidence of non-normality? Normal Probability Plot .999 .99 Probability .95 .80 .50 .20 .05 .01 .001 85 95 105 115 125 HousePrice8_ Average: 101.375 StDev: 14.2020 N: 8 Anderson-Darling Normality Test A-Squared: 0.194 P-Value: 0.837 No evidence of non-normality. b. The minimum variance unbiased point estimator of the population mean is the X i 101.375 sample mean: X n c. The unbiased point estimate of the variance of the sample mean: 2 xi nx 2 83627 8(101.375)2 2 sx 201.6964 n 1 7 2 x2 sx 201.6964 ˆ (X ) Var ( X ) ; Var 25.2121 n n 8 x 3 d. px .375 n 8 Chapter 8: Estimation a. Check each variable for normal distribution: Normal Probability Plot .999 .99 Probability .95 .80 .50 .20 .05 .01 .001 45 50 55 Meals Average: 50.1 StDev: 2.46842 N: 30 Anderson-Darling Normality Test A-Squared: 0.413 P-Value: 0.318 Normal Probability Plot .999 .99 .95 Probability 8-3 .80 .50 .20 .05 .01 .001 15 20 25 Attendance Average: 21.24 StDev: 2.50466 N: 25 Anderson-Darling Normality Test A-Squared: 0.377 P-Value: 0.383 115 116 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition Normal Probability Plot .999 .99 Probability .95 .80 .50 .20 .05 .01 .001 9 10 11 12 13 14 15 16 Ages Average: 12.24 StDev: 1.96384 N: 25 Anderson-Darling Normality Test A-Squared: 0.569 P-Value: 0.126 No evidence of non-normality in Meals, Attendance or Ages b. Unbiased estimates of population mean and variance: Descriptive Statistics: Meals, Attendance, Ages Variable Meals Attendan Ages N 30 25 25 Mean 50.100 21.240 12.240 Median 50.000 21.000 12.000 TrMean 50.192 21.348 12.217 Variable Meals Attendan Ages Minimum 45.000 15.000 9.000 Maximum 55.000 25.000 16.000 Q1 48.000 19.500 10.000 Q3 52.000 23.500 14.000 StDev 2.468 2.505 1.964 Variable Unbiased estimate of mean Unbiased estimate of variance (s2) Meals 50.100 (2.468)2 = 6.0910 Attendance 21.240 (2.505)2 = 6.2750 Ages 12.240 (1.964)2 = 3.8573 1 1 8-4 a. E ( X ) E ( X 1 ) E ( X 2 ) 2 2 2 2 1 3 3 E (Y ) E ( X 1 ) E ( X 2 ) 4 4 4 4 1 2 2 E (Z ) E ( X1 ) E ( X 2 ) 3 3 3 3 SE Mean 0.451 0.501 0.393 Chapter 8: Estimation 1 1 12 2 Var ( X 1 ) Var ( X 2 ) n 4 4 2 8 4 2 1 9 5 Var (Y ) Var ( X 1 ) Var ( X 2 ) 16 16 8 2 1 4 5 Var ( Z ) Var ( X 1 ) Var ( X 2 ) 9 9 9 is most efficient since Var ( X ) Var (Y ) Var ( Z ) X Var (Y ) 5 c. Relative efficiency between Y and X : 1.25 Var ( X ) 4 Var ( Z ) 10 Relative efficiency between Z and X : 1.111 Var ( X ) 9 b. Var ( X ) 2 8-5 Calculate a weighted average of the proportions: 24 32 pmen .40, pwomen .533 60 60 480 370 ptotal ; pmen ; pwomen .5647(.40) .4353(.533) .458 480 370 480 370 8-6 a. Evidence of non-normality? Normal Probability Plot for Leak Rates ( ML Estimates 99 ML Estimates 95 Mean 0.0515 StDev 0.0216428 90 Goodness of Fit Percent 80 AD* 70 60 50 40 30 0.596 20 10 5 1 0.00 0.05 0.10 Data No evidence of nonnormality exists. b. The minimum variance unbiased point estimator of the population mean is X i .0515 the sample mean: X n 117 118 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition c. The unbiased point estimate of the variance of the sample mean: s 2 x (.0216428)2 .0004684 Var ( X ) 8-7 2X n ˆ (X ) ; Var s 2 X .0004684 .00000937 n 50 a. Evidence of non-normality? Normal Probability Plot .999 .99 Probability .95 .80 .50 .20 .05 .01 .001 3.6 3.7 3.8 3.9 4.0 4.1 Weights Average: 3.80787 StDev: 0.102407 N: 75 Anderson-Darling Normality Test A-Squared: 0.511 P-Value: 0.191 No evidence of the data distribution coming from a non-normal population b. The minimum variance unbiased point estimator of the population mean is the X i 3.8079 sample mean: X n Descriptive Statistics: Weights Variable Weights N 75 Mean 3.8079 Median 3.7900 TrMean 3.8054 Variable Weights Minimum 3.5700 Maximum 4.1100 Q1 3.7400 Q3 3.8700 StDev 0.1024 SE Mean 0.0118 c. Minimum variance unbiased point estimate of the population variance is the sample variance s2: s2 = (.1024)2 = .01049 8-8 a. n 25, x 2.90, .45, z.025 1.96 = 2.90 1.96(.45/5) = 2.7236 up to 3.0764 x z n b. 2.99 – 2.90 = .09 = z / 2 (.45 / 5), z / 2 1 2[1 Fz (1)] .3174 100(1-.3174)% = 68.26% Chapter 8: Estimation 8-9 a. n 16, x 4.07, .12, z.005 2.58 4.07 2.58(.12/4) = 3.9926 up to 4.1474 b. narrower since the z score for a 95% confidence interval is smaller than the z score for the 99% confidence interval c. narrower due to the smaller standard error d. wider due to the larger standard error 8-10 a. n 9, x 187.9, 32.4, z.10 1.28 187.9 1.28(32.4/3) = 174.076 up to 201.724 b. 210.0 – 187.9 = 22.1 = z / 2 (32.4 / 3), z / 2 2.05 2[1 Fz (2.05)] .0404 100(1-.0404)% = 95.96% 8-11 a. 95% confidence interval: Results for: TOC.xls One-Sample T: Leak Rates (cc/sec.) Variable Leak Rates ( N 50 Mean 0.05150 StDev 0.02186 SE Mean 0.00309 95.0% CI ( 0.04529, 0.05771) SE Mean 0.00309 98.0% CI ( 0.04406, 0.05894) b. 98% confidence interval: One-Sample T: Leak Rates (cc/sec.) Variable Leak Rates ( 8-12 N 50 Mean 0.05150 StDev 0.02186 a. Results for: Sugar.xls Descriptive Statistics: Weights Variable Weights N 100 Mean 520.95 Median 518.75 TrMean 520.52 Variable Weights Minimum 504.70 Maximum 544.80 Q1 513.80 Q3 527.28 StDev 9.45 SE Mean 0.95 90% confidence interval: Results for: Sugar.xls One-Sample T: Weights Variable Weights N 100 Mean 520.948 StDev 9.451 SE Mean 0.945 90.0% CI ( 519.379, 522.517) b. narrower since a smaller value of z will be used in generating the 80% confidence interval. 8-13 n 457, x 3.59, s 1.045 3.69 – 3.59 = .1 = z / 2 (1.045/ 457), z / 2 2.05 2[1 Fz (2.05)] .0404 100(1-.0404)% = 95.96% 119 120 8-14 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition n 174, x 6.06, s 1.43 6.16 – 6.06 = .1 = z / 2 (1.43/ 174), z / 2 .922 2[1 Fz (.92)] .3576 100(1-.3576)% = 64.24% 8-15 n 9, x 157.82, s 38.89, t8,.025 2.306 margin for error: 2.306(38.89/3) = 29.8934 8-16 n 7, x 74.7143, s 6.3957, t6,.025 2.447 margin for error: 2.447(6.3957/ 7 ) = 5.9152 8-17 a. n 10, x 16.37, s 5.3757, t9,.005 3.25 16.37 3.25(5.3757/ 10 ) = 10.8452 up to 21.895 b. narrower since the t-score will be smaller for a 90% confidence interval than for a 99% confidence interval 8-18 n 25, x 42, 740, s 4, 780, t24,.05 1.711 42,740 1.711(4780/5) = 41,104.28 up to 44,375.72 8-19 n 9, x 16.222, s 4.790, t8,.10 1.86 We must assume a normally distributed population 16.222 1.86(4.790/3) = 13.252 up to 19.192 8-20 a. unbiased point estimate of proportion: Tally for Discrete Variables: Adequate Variety Adequate Variety 1 2 N= Count CumCnt 135 135 221 356 356 Percent CumPct 37.92 37.92 62.08 100.00 x 135 .3792 n 356 b. 90% confidence interval: n 356, p 135 / 356 .3792, z.05 1.645 p p(1 p) = .3792 (1.645) .3792(.6208) / 356 = n .3369 up to .4215 p z / 2 Chapter 8: Estimation 8-21 n 189, p 57 /189 .3016, z.025 1.96 p(1 p) = .3016 (1.96) .6984(.3016) /189 = n .2362 up to .3670 p z / 2 8-22 p(1 p) n p(1 p) .8790(.121) .90 - .8790 = .021, .0133 n 600 .021 = z / 2 (.0133), z / 2 1.58 m arg in for error z 2[1 Fz (1.58)] .1142 100(1-.1142)% = 88.58% 8-23 n 320, p 80 / 320 .25, z.025 1.96 p(1 p) = .25 (1.96) .25(.75) / 320 = n 95% confidence interval: .2026 up to .2974 p z / 2 8-24 n 95, p 67 / 95 .7053, z.005 2.58 p(1 p) = .7053 (2.58) .7053(.2947) / 95 = n 99% confidence interval: .5846 up to .8260 Using PHStat, the result is: Sample Proportion 0.705263158 Z Value -2.57583451 Standard Error of the Proportion 0.046776854 Interval Half Width 0.120489435 Confidence Interval Interval Lower Limit 0.584773723 Interval Upper Limit 0.825752593 p z / 2 8-25 n 320, p 240 / 320 .75, z.025 1.96 p(1 p) = .75 (1.96) .75(.25) / 320 = n 95% confidence interval: .7026 up to .7974 p z / 2 121 122 8-26 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition p(1 p) n p(1 p) .495(.505) .545-.445 = .100, p = .495, .0355 n 198 .05 = z / 2 (.0355), z / 2 1.41 m arg in for error z 2[1 Fz (1.41)] .0793 100(1-.1586)% = 84.14% 8-27 n 420, p 223/ 420 .5310, z.025 1.96 p(1 p) = .5310 (1.96) .5310(.4690) / 420 = n 95% confidence interval: .4833 up to .5787 The margin for error is .0477 p z / 2 8-28 n 246, p 40 / 246 .1626, z.01 2.326 p(1 p) = .1626 (2.326) .1626(.8374) / 246 = n 98% confidence interval: .1079 up to .2173 Using PHStat, the result is: Sample Proportion 0.1626 Z Value -2.3263 Standard Error of the Proportion 0.0235 Interval Half Width 0.0547 Confidence Interval Interval Lower Limit 0.1079 Interval Upper Limit 0.2173 p z / 2 8-29 a. n 246, p 232 / 246 .9431, z.01 2.326 p(1 p) = .9431 (2.326) .9431(.0569) / 246 = n 98% confidence interval: .9087 up to .9775 b. n 246, p 10 / 246 .0407, z.01 2.326 P z / 2 p(1 p) = .0407 (2.326) .0407(.9593) / 246 = n 98% confidence interval: .0114 up to .0699 p z / 2 Chapter 8: Estimation 8-30 n 50, s 2 (.000478)2 , 2 49,.025 70.222, 2 49,.975 31.555 (n 1) s 2 2 n1, / 2 2 (n 1)s 2 2 n1,1 / 2 = 49(.000478)2 49(.000478)2 2 = 70.222 31.555 1.59E-7 < 2 < 3.55E-7 8-31 n 10, s 2 28.898, 29,.05 16.92, 29,.95 3.33 (n 1) s 2 2 n1, / 2 2 (n 1)s 2 2 n1,1 / 2 = 9(28.898) 9(28.898) 2 = 16.92 3.33 15.3713 up to 78.1027 8-32 n 20, s 2 6.62, 219,.025 32.85, 219,.975 8.91 (n 1) s 2 2 n1, / 2 2 (n 1)s 2 2 n1,1 / 2 = 19(6.62) 19(6.62) 2 = 32.85 8.91 3.8289 up to 14.1167 Bounds = 5.1439 Similar values are found with PHStat, Degrees of Freedom 19 Sum of Squares 125.78 Single Tail Area 0.025 Lower Chi-Square Value 8.9065 Upper Chi-Square Value 32.852 Results Interval Lower Limit for Variance 3.8285 Interval Upper Limit for Variance 14.122 Assumption: Population from which sample was drawn has an approximate normal distribution. 8-33 n 18, s 2 108.16, 217,.05 27.59, 217,.95 8.67 (n 1) s 2 2 n1, / 2 2 (n 1)s 2 2 n1,1 / 2 = 17(108.16) 17(108.16) 2 = 27.59 8.67 66.6444 up to 212.0784 Assume that the population is normally distributed 123 124 8-34 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition a. n 15, s 2 (2.36)2 , 214,.05 26.12, 214,.95 5.63 14(5.5696) 14(5.5696) 2 = 26.12 5.63 2.9852 up to 13.8498 From PHStat, similar results. Interval Lower Limit for Variance 2.9854 Interval Upper Limit for Variance 13.853 Assumption: Population from which sample was drawn has an approximate normal distribution. b. wider since the chi-square statistic for a 99% confidence interval is larger than for a 95% confidence interval 8-35 n 9, s 2 .7875, 28,.05 15.51, 28,.95 2.73 8(.7875) 8(.7875) 2 = 15.51 2.73 .4062 up to 2.3077 8-36 Let X = Without Passive Solar; Y = With Passive Solar; di xi yi n 10, d i 373, d 37.3, d 2 i 16,719, t9,.05 1.833 sd [16, 719 (10)(37.3) 2 ] / 9 17.6575 37.3 1.833(17.6575) / 10 27.0649 x y 47.5351 8-37 di xi yi , xi after course n 6, d i 45, d 7.5, d sd [2, 099 (6)(7.5) 2 ] / 5 18.77 7.5 1.476(18.77) / 6 3.8103 x y 18.8103 2 i 2, 099, t5,.10 1.476 Chapter 8: Estimation 2 8-38 2 sy sx = nx n y 95% confidence interval: ( X Y ) t( v , / 2) 2 s 2 s y 2 x nx n y where v = 2 2 2 2 sx sy /( n y 1) /(nx 1) nx ny 2 2.532 8.612 6 9 = 9.940 v 2 2 2.532 8.612 /(6 1) /(9 1) 6 9 2 (76.12 – 74.61) t10,.025 2 sy sx = nx n y (2.53)2 (8.61)2 = 6 9 -5.286 up to 8.306 1.51 2.228 8-39 Descriptive Statistics: Machine 1, Machine 2 Variable Machine Machine N 100 100 Mean 520.95 513.75 Median 518.75 514.05 TrMean 520.52 513.91 Variable Machine Machine Minimum 504.70 496.50 Maximum 544.80 527.00 Q1 513.80 510.33 Q3 527.28 517.68 StDev 9.45 5.49 SE Mean 0.95 0.55 95% confidence level: assuming normal populations and similar variances (520.95 513.75) (1.96) (9.45)2 (5.49)2 100 100 5.0579 up to 9.3421 8-40 nx 138, x 36,558, sx 11,624, z.05 1.645 ny 266, y 37, 499, s y 16,521 (36,558 37, 499) (1.645) -3,270.41 up to 1,388.41 (11, 624)2 (16,521) 2 138 266 125 126 8-41 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition nx 190, x .517, sx .148, z.005 2.58 ny 417, y .489, s y .159 (.148)2 (.159) 2 (.517 .489) (2.58) 190 417 -.0062 up to .0622 8-42 nx 9, x 9.78, s 2 x 17.64, t17,.05 1.74 ny 10, y 15.1, s 2 y 27.01 (9.78 15.10) (1.74) 8(17.64) 9(27.01) 19 17 90 -9.1207 up to –1.5193 8-43 nx 12, x 135, 000, sx 56, 000, t25,.025 2.06 ny 15, y 408, 000, s y 43, 000 (435, 000 408, 000) (2.06) 11(56, 000) 2 14(43, 000) 2 27 25 180 -12,209.98 up to 66,209.98 8-44 nx 21, x 72.1, sx 11.3, t37,.10 1.303 ny 18, y 73.8, s y 10.6 20(11.3)2 17(10.6)2 39 (72.1 73.8) (1.303) 37 378 -6.2971 up to 2.8971 8-45 nx 120, px ( px p y ) z / 2 x 85 .7083, ny 163, n 120 px (1 px ) p y (1 p y ) = nx ny (.7083 .4785) (2.326) .2298 .132657 .0971 up to .3625 py y 78 .4785, z.01 2.33 n 163 (.7083)(.2917) (.4785)(.5215) = 120 163 Chapter 8: Estimation 8-46 Results for: Library.xls Tabulated Statistics: Class, Adequate Variety Rows: Class 1 Columns: Adequate 2 All 1 73 50.69 54.07 20.56 71 49.31 32.27 20.00 144 100.00 40.56 40.56 2 26 25.49 19.26 7.32 76 74.51 34.55 21.41 102 100.00 28.73 28.73 3 19 28.79 14.07 5.35 47 71.21 21.36 13.24 66 100.00 18.59 18.59 4 17 39.53 12.59 4.79 26 60.47 11.82 7.32 43 100.00 12.11 12.11 135 38.03 100.00 38.03 220 61.97 100.00 61.97 355 100.00 100.00 100.00 All Cell Contents -Count % of Row % of Col % of Tbl pseniors 17 / 43 .3953, p freshmen 73 /144 .5069 (.3953)(.6047) (.5069)(.4931) = 43 144 -.1116 .1405 = -.2521 up to .0289 (.3953 .5069) (1.645) 8-47 p freshmen 80 /138 .5797, (.5797 .7396) (1.96) psophs 71/ 96 .7396 (.5797)(.4203) (.7396)(.2604) = 138 96 -.1599 .1204 -.2803 up to -.0395 8-48 nx 100, px .61, ny 100, .1 (.61 .54) .03 z / 2 2[1 Fz (.43)] .6672 p y .54 (.61)(.39) (.54)(.46) , z / 2 .43 100 100 100(1-.6672)% = 33.28% confidence level 127 128 8-49 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition nx 510, px .6275, n y 332, (.6275 .6024) (1.645) p y .6024, z.05 1.645 (.6275)(.3725) (.6024)(.3976) 510 332 .0251 .0565 -.0314 up to .0816 8-50 a. z.05 1.645, B .04 .25( z / 2 ) 2 (.25)(1.645) 2 = n 422.8 , take n = 423 B2 (.04) 2 (.25)(1.96)2 b. 600.25 , take n = 601 (.04)2 (.25)(2.33)2 c. 542.89 , take n = 543 (.05)2 8-51 z.005 2.58, B .05 n 8-52 z.05 1.645, B .03 n 8-53 .25( z / 2 ) 2 (.25)(2.58) 2 = 665.64 , take n = 666 B2 (.05) 2 .25( z / 2 ) 2 (.25)(1.645) 2 = 751.7 , take n = 752 B2 (.03) 2 a. n 10, x 257, s 37.2, t9,.05 1.833 = 257 1.833(37.2/ 10 ) = 235.4318 up to 278.5628 x t s n assume that the population is normally distributed b. 85 and 98% confidence intervals: Using Minitab: One-Sample T: NewPrescriptions8_53 Variable NewPrescript N 10 Mean 257.0 StDev 37.2 One-Sample T: NewPrescriptions8_53 Variable NewPrescript N 10 Mean 257.0 StDev 37.2 SE Mean 11.8 ( 85.0% CI 238.5, 275.5) SE Mean 11.8 ( 98.0% CI 223.8, 290.2) c. The sample size would need to quadruple in order to cut in half the bounds of the confidence interval Chapter 8: Estimation 8-54 n 16, x 150, s 12, t15,.025 2.131 = 150 2.131(12/4) = 143.607 up to 156.393 x t s n Using PHStat, Standard Error of the Mean 3 Degrees of Freedom 15 t Value 2.131450856 Interval Half Width 6.394352567 Confidence Interval Interval Lower Limit 143.61 Interval Upper Limit 156.39 It is recommended that he stock 157 gallons. 8-55 n 50, x 30, s 4.2, z.05 1.645 = 30 1.645(4.2/ 50 ) = 29.0229 up to 30.9771 8-56 Results from Minitab: Descriptive Statistics: Passengers8_56 Variable Passenge Variable Passenge N 50 Minimum 86.00 Mean 136.22 Maximum 180.00 One-Sample T: Passengers8_56 Variable Passengers8_ N 50 Mean 136.22 Median 141.00 Q1 118.50 StDev 24.44 TrMean 136.75 Q3 152.00 SE Mean 3.46 Using results from PHStat, Data Sample Standard Deviation Sample Mean Sample Size Confidence Level Standard Error of the Mean Degrees of Freedom t Value Interval Half Width Confidence Interval Interval Lower Limit Interval Upper Limit ( StDev 24.44 95.0% CI 129.27, 143.17) SE Mean 3.46 24.43925414 136.22 50 95% 3.456232466 49 2.009574018 6.945554964 129.27 143.17 129 130 8-57 Instructor’s Solutions Manual for Statistics for Business & Economics, 5 th Edition a. 88% confidence level for proportion of defects due to incorrect label Tally for Discrete Variables: defect defect dent Incorrect Label Missing label Wrong color N= Count CumCnt 13 13 8 21 14 35 13 48 48 p 8 / 48 .1667, Percent CumPct 27.08 27.08 16.67 43.75 29.17 72.92 27.08 100.00 pz p(1 p) (.1667)(.8333) = .1667 1.56 n 48 .0828 up to .2506 b. 92% confidence interval for proportion of defects due to missing label p(1 p) (.2917)(.7083) = p 14 / 48 .2917, p z .2917 1.75 n 48 .1769 up to .4065 8-58 a. nx 225, px .6222, ny 210, p y .5714, z.05 1.645 px p y .6222 .5714 .0508 b. Minitab results: Test and CI for Two Proportions Sample X N Sample p 1 140 225 0.622222 2 120 210 0.571429 Estimate for p(1) - p(2): 0.0507937 95% CI for p(1) - p(2): (-0.0413643, 0.142952) 8-59 Assume both populations are distributed normally with equal variances nx 40, x 340, sx 20, t.05 1.671 n y 50, y 285, s y 30 (nx 1) sx (n y 1) s y 1 1 where s p nx n y 2 nx ny 2 ( X Y ) tnx ny 2, / 2 s p sp (40 1)202 (50 1)302 = 29.63007 40 30 2 (340 285) (1.671)(29.63007) 44.49695 up to 65.50305 1 1 40 50 2 Chapter 8: Estimation 8-60 Assume both populations are distributed normally with equal variances nx 15, x 470, sx 5, t25,.05 1.708 ny 12, y 460, s y 7 (nx 1) sx (n y 1) s y 2 (470 460) (1.708) nx n y 2 2 1 1 nx n y (15 1)52 (12 1)7 2 1 1 (470 460) (1.708) 15 12 2 15 12 10 (1.708)(5.9632)(.3873) 10 3.9447 = 6.055 up to 13.945 Since both endpoints of the confidence interval are positive, this provides evidence that the new machine provides a larger mean filling weight than the old 8-61 90% confidence level: z.05 1.645, B .025 .25( z / 2 ) 2 (.25)(1.645) 2 = 1082.4 , take n = 1,083 B2 (.025) 2 85% confidence level: z.075 1.44, B .025 n n .25( z / 2 ) 2 (.25)(1.44) 2 = 829.4 , take n = 830 B2 (.025) 2 8-62 a. The minimum variance unbiased point estimator of the population mean is the X i 27 3.375. The unbiased point estimate of the sample mean: X n 8 2 2 xi nx 94.62 8(3.375)2 .4993 variance: s 2 x n 1 7 x 3 b. px .375 n 8 8-63 98% confidence interval for student pair: Results for: Student Pair.xls Paired T-Test and CI: COURSE, NO COURSE Paired T for COURSE - NO COURSE N Mean COURSE 6 70.67 NO COURSE 6 66.17 Difference 6 4.50 StDev 16.03 14.19 4.14 SE Mean 6.55 5.79 1.69 98% CI for mean difference: (-1.18, 10.18) 131