Download Hall effect

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Computational Solid
State Physics
計算物性学特論 第9回
9. Transport properties I:
Diffusive transport
Electron transport properties
le: mean free path of electrons
lφ: phase coherence length
λF: Fermi wavelength
Examples of quantum transport
key quantities
le : mean free path of electrons
lφ: phase coherence length
λF: Fermi wavelength
single electron charging
Point contact: ballistic
quantum
conductance
2e 2
Go 
h
Aharanov Bohm effect:
phase coherent
quantum
magnetic flux
0  h / e
Quantum dot:
single electron charging
Shubnikov-de Haas oscillations
and quantum Hall effect
Diffusive transport
Equation of motion for electrons
dk

F
k: wave vecot of Bloch electron
dt
d
1 
r  Vg 
 (k )
dt
 k
Scattering Rate
2
2
Pkk  
 k (r ) Vscat (r )  k  (r )   (k )   (k ) 

1
  Pkk'
 k k'
How to solve equations of motion
for electrons with scattering?
 Relaxation time approximation for scattering
 Direct numerical solution:
Monte Carlo simulation
 Boltzmann equation for distribution function
of electrons
Relaxation time approximation
 2k 2
 (k )   c 
2m
m: effective mass
1 dk d 2 (k ) 1

 F
2
dt
 dt dk
m
dvg
equation of motion
m
dv g
 F m
vg
dt

F   e( E  v g  B )
j  env g
E: electric field
B: magnetic field
current density
n: electron concentration
Drude model: B=0
m
dvg
dt
 eE  m
vg

E  E0 exp( it )
 e
1
: drift velocity
vg 
E
m 1  i
ne 2
1
j  envg 
E
j


E
m 1  i
ne 2
1
conductivity  ( ) 
m 1  i
Drude model: steady state
solution in magnetic field
m
dv g
 F m
vg
dt

F   e( E  v g  B )
eB
c 
m
: cyclotron
frequency
: B is assumed parallel to z.
F   e( E x  v y B , E y  v x B , E z )
drift velocity
 v gx 
 1
 

e
1

 v gy   
2 2  c
m 1  c  
v 
 0
 gz 
 c
1
0
 E x 
 
 E y 
1  c2 2  E z 
0
0
Conductivity tensor in
magnetic field
j  env g  E
1


ne 2
1


2 2  c
m 1  c  
 0
eB
c 
m
 c
0


1
0

2 2
0
1  c  
Hall effect
B // z
I // x
 1

ne 
1
j

2 2  c
m 1  c  
 0
2
eB
c 
m
 c
0
 Ex 
 
1
0
 E y 
2
0
1  c  2  Ez 
jx
B
ne
jy  0
E y  cE x 
ne 2
jx 
Ex
m
no transverse magneto-resistance
Hall effect
Monte Carlo simulation for
electron motion
dk
F
dt
d
1 
r  Vg 
 (k )
dt
 k
2
Pkk  
 k (r ) Vscat (r )  k  (r )

  (k )   (k ) 

2
dk

F
dt
Scattering
d
1 
r  Vg 
 (k )
dt
  k Drift
2
Pkk  
 k (r ) Vscat (r )  k (r )

  (k )   (k ) 
Drift
Scattering
2
Drift velocity as a function of time
Vx
1 t
  Vx (t )dt 
t 0
jx  en  vx 
: current
Boltzmann equation
Motion of electrons in r-k space during
infinitesimal time Interval Δt
k
r  v g t
r
F
k  t

Equation of motion for
distribution function
equation of motion for electron distribution
function fk(r,t).
f k (r , t  dt )  f k (r , t )
f k (r , t  dt )  f k (r , t ) 
f k | force 
f k |diff 
dt
dt
f Fdt (r , t )  f k (r , t )
f k (r  v g dt , t )  f k (r , t )
k



dt
dt
f
F f k
 v g k

r
 k

Boltzmann equation




f k  f k |diff  f k | force  f k |scatt
Steady state



f k |diff  f k | field   f k |scatt

F
   k f k  v g   r f k   f k |scatt

Boltzmann equation
Electron scattering

f k |scatt 

1
(2 )
3
1
[ f
(1  f k ) Pkk '  f k (1  f k ' ) Pk 'k ]dk '
(2 )
3
[ f
 f k ]Pkk ' dk '
k'
k'
detailed balance condition for transition probability
Pkk '  Pk 'k
Scattering term
assume: elastic scattering, spherical symmetry
1
[ f
 f k ' ]Pkk ' dk '
(2 )
1
0
0

[(
f

f
)

(
f

f
k
k
k'
k ' )] Pkk ' dk '
3 
(2 )
1
0
 ( fk  fk )
3
k
k
1
k

1
(2 )
3
P
kk '
(1  cos  kk ' )dk '
Pkk '  P(k , kk ' )
Transport scattering time
1
k

1
(2 )
3
P
kk '
Pkk '  P(k , kk ' )
(1  cos  kk ' )dk '
k’
Θkk’
k
Contribution of forward scattering is not efficient.
Contribution of backward scattering is efficient.
Linearized Boltzmann equation
f k0
f k0
1
0
 vk 
T  vk 
F  ( fk  fk )
T

k
0
0

f

f
f k  f k0  vk  ( k T  k F ) k
T

1
1

P (1  cos  kk ' )dk '
3  kk '
 k (2 )
Pkk '  P(k , kk ' )
Fermi sphere is shifted by electric field.
Current density and
conductivity
j
2
(2 )3
3

evf
d
 k k
f k0
3
j
ev
(
v

eE
)

d
k
k
k
k
3 
(2 )

2
j x   xx E x
 xx
0

f
e2
2
  3  vx  k k d 3k
4

Electron mobility in GaAs
Energy flux and thermal
conductivity
f k0
3
U 

(
k
)
v
(
v


T
)

d
k
k
k
k
3 
(2 )
T
2
f k0
3


(
k
)
v
v

d
k  T
k k
k
3 
(2 )
T
2
thermal conductivity
U  KT
f k0
3
K 

(
k
)
v
v

d
k
k k
k
3 
(2 )
T
2
Problems 9
 Calculate both the conductivity and the
resistivity tensors in the static magnetic fields,
by solving the equation of motion in the
relaxation time approximation.
 Study the temperature dependence of
electron mobility in n-type Si.
 Calculate the electron mobility in n-type
silicon for both impurity scattering and
acoustic phonon scattering mechanisms, by
using the linearized Boltzmann equation.
Related documents