Download MicroeconomicsProblem Set 1NCKU Economics Suppose for Show

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Supply and demand wikipedia , lookup

Home economics wikipedia , lookup

Economic equilibrium wikipedia , lookup

Transcript
Microeconomics
Problem Set 1
NCKU Economics
𝑀
1. Suppose π‘₯π‘˜ (𝑝, 𝑀) = 𝐿𝑝 for π‘˜ = 1, β‹― , 𝐿.
π‘˜
(a.) Show that π‘₯(𝑝, 𝑀) is homogeneous of degree zero (hd0) in (𝑝, 𝑀)
𝛼𝑀
𝑀
π‘₯π‘˜ (𝛼𝑝, 𝛼𝑀) =
=
= π‘₯π‘˜ (𝑝, 𝑀)
πΏπ›Όπ‘π‘˜ πΏπ‘π‘˜
(b.) Show that π‘₯(𝑝, 𝑀) satisfies Walras’ law (WL).
𝐿
𝑝 βˆ™ π‘₯(𝑝, 𝑀) = βˆ‘
𝐿
π‘π‘˜ π‘₯π‘˜ (𝑝, 𝑀) = βˆ‘
π‘˜=1
π‘˜=1
π‘π‘˜
𝐿
𝑀
𝑀
=βˆ‘
=𝑀
πΏπ‘π‘˜
π‘˜=1 𝐿
(c.) Let 𝐿 = 2. Derive its Slutsky substitution matrix.
βˆ’π‘€
4𝑝2
𝑆(𝑝, 𝑀) = [ 𝑀1
4𝑝1 𝑝2
𝑀
4𝑝1 𝑝2
βˆ’π‘€ ]
4𝑝22
2. For computing the change in consumption quantities between two periods,
Laspeyres quantity index ( 𝐿𝑄 = 𝑝0 βˆ™ π‘₯1 /𝑝0 βˆ™ π‘₯0 ) uses period 0 prices as
weights while Paasche quantity index (𝑃𝑄 = 𝑝1 βˆ™ π‘₯1 /𝑝1 βˆ™ π‘₯0 PQ=p1x1/p1x0) uses
period 1 prices as weights. Show that
(a.) If 𝐿𝑄 < 1, then the consumer has a revealed preference for π‘₯0 over π‘₯1 .
If 𝐿𝑄 < 1, 𝑝0 βˆ™ π‘₯1 < 𝑝0 βˆ™ π‘₯0 . When one can afford both π‘₯0 and π‘₯1 , and π‘₯0
is chosen, π‘₯0 is preferred to π‘₯1 .
(b.) If 𝑃𝑄 > 1, then the consumer has a revealed preference for π‘₯1 over π‘₯0 .
If 𝑃𝑄 > 1, 𝑝1 βˆ™ π‘₯1 > 𝑝1 βˆ™ π‘₯0 . When one can afford both π‘₯0 and π‘₯1 , and π‘₯1
is chosen, π‘₯1 is preferred to π‘₯0 .
3. Verify if one can derive 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 + 𝐷𝑀 π‘₯(𝑝, 𝑀)𝑀 = 0 simply from
𝑝𝑇 𝐷𝑝 π‘₯(𝑝, 𝑀) + π‘₯(𝑝, 𝑀)𝑇 = 0 and 𝑝𝑇 𝐷𝑀 π‘₯(𝑝, 𝑀) = 1 . If not, discuss the
necessary condition for the property to hold.
𝑝𝑇 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 + π‘₯(𝑝, 𝑀)𝑇 𝑝 = 0𝑇 𝑝;
𝑝𝑇 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 + 𝑀 = 0;
𝐷𝑀 π‘₯(𝑝, 𝑀)𝑝𝑇 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 + 𝐷𝑀 π‘₯(𝑝, 𝑀)𝑀 = 0 is different from 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 +
𝐷𝑀 π‘₯(𝑝, 𝑀)𝑀 = 0.
In order to derive 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 + 𝐷𝑀 π‘₯(𝑝, 𝑀)𝑀 = 0. We need π‘₯(𝑝, 𝑀) to be
hd0, i.e. π‘₯(𝛼𝑦) = π‘₯(𝑦).
𝑝
Let 𝑦 = ( ). Differentiate both sides of π‘₯(𝛼𝑦) ≑ π‘₯(𝑦) with respect to 𝛼.
𝑀
By chain rule, 𝐷𝛼𝑦 π‘₯(𝛼𝑦)𝑦 = 0 and 𝐷𝑦 π‘₯(𝑦)𝑦 = 0 when evaluated at Ξ± = 1.
𝐷𝑦 π‘₯(𝑦)𝑦 = (𝐷𝑝 π‘₯(𝑝, 𝑀)
𝑝
𝐷𝑀 π‘₯(𝑝, 𝑀)) ( ) = 𝐷𝑝 π‘₯(𝑝, 𝑀)𝑝 + 𝐷𝑀 π‘₯(𝑝, 𝑀)𝑀.
𝑀
Microeconomics
Problem Set 1
NCKU Economics
4. Suppose π‘₯(𝑝, 𝑀) satisfies WL and hd0 in (𝑝, 𝑀). Show that WA holds if and
only if it holds for any compensated price change. (Refer to p.31 of the
textbook)
a. WA holds β†’ WA for compensated price change holds.
Since WA holds for any change in price and income pair, certainly it will hold
for any compensated price change.
b. WA doesn’t hold β†’ WA for compensated price change doesn’t hold.
If WA doesn’t hold, for any change from (𝑝′ , 𝑀′) to (𝑝′′ , 𝑀 β€²β€² ) such that
π‘₯(𝑝′ , 𝑀′) β‰  π‘₯(𝑝′′ , 𝑀 β€²β€² ), we have 𝑝′ βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ) ≀ 𝑀′ and 𝑝′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) ≀ 𝑀′′.
If one of the two weak inequalities holds with equality, it is indeed a violation of
WA for compensated price change.
Next focus on the case with 𝑝′ βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ) < 𝑀′ and 𝑝′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) < 𝑀′′.
First, by above inequalities, there exists Ξ± ∈ (0,1) such that (α𝑝′ + (1 βˆ’ 𝛼)𝑝′′ ) βˆ™
π‘₯(𝑝′ , 𝑀 β€² ) = (α𝑝′ + (1 βˆ’ 𝛼)𝑝′′ ) βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ) . (Note when 𝛼 = 0 , (α𝑝′ + (1 βˆ’
𝛼)𝑝′′ ) βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) < (α𝑝′ + (1 βˆ’ 𝛼)𝑝′′ ) βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ) and when 𝛼 = 1 , (α𝑝′ +
(1 βˆ’ 𝛼)𝑝′′ ) βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) > (α𝑝′ + (1 βˆ’ 𝛼)𝑝′′ ) βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ))
Let 𝑝′′′ = (α𝑝′ + (1 βˆ’ 𝛼)𝑝′′ ), 𝑀 β€²β€²β€² = 𝑝′′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) = 𝑝′′′ βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ).
α𝑀 β€² + (1 βˆ’ 𝛼)π’˜β€²β€² > α𝑝′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) + (1 βˆ’ 𝛼)𝒑′′ βˆ™ 𝒙(𝒑′ , π’˜β€² )
= 𝑝′′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² )
= 𝑀 β€²β€²β€²
= 𝑝′′′ βˆ™ π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² )
= α𝑝′ βˆ™ π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² ) + (1 βˆ’ 𝛼)𝑝′′ βˆ™ π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² )
When π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² ) β‰  π‘₯(𝑝′ , 𝑀 β€² ) and π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² ) β‰  π‘₯(𝑝′′ , 𝑀 β€²β€² ) either 𝑀 β€² > 𝑝′ βˆ™
π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² ) or 𝑀 β€²β€² > 𝑝′′ βˆ™ π‘₯(𝑝′′′ , 𝑀 β€²β€²β€² ) implies the violation of WA for
compensated price change since 𝑀 β€²β€²β€² = 𝑝′′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) = 𝑝′′′ βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ).
5. Show that if π‘₯(𝑝, 𝑀) satisfies WA, it must be hd0 in (𝑝, 𝑀).
𝑝 βˆ™ π‘₯(𝑝, 𝑀) ≀ 𝑀 and 𝛼𝑝 βˆ™ π‘₯(𝛼𝑝, 𝛼𝑀) ≀ 𝛼𝑀 because π‘₯(𝑝, 𝑀) is affordable.
Equivalently we have 𝛼𝑝 βˆ™ π‘₯(𝑝, 𝑀) ≀ 𝛼𝑀 and 𝑝 βˆ™ π‘₯(𝛼𝑝, 𝛼𝑀) ≀ 𝑀. If WA
holds, then it must be that π‘₯(𝑝, 𝑀) = π‘₯(𝛼𝑝, 𝛼𝑀) so that π‘₯(𝑝, 𝑀) is hd0.
6. Show that for L=2, the Slutsky matrix, 𝑆(𝑝, 𝑀), is always symmetric.
Since 𝑆(𝑝, 𝑀)𝑝 = 0 and 𝑝𝑇 𝑆(𝑝, 𝑀) = 0, we have
[
𝑆11
𝑆21
[𝑝1
𝑆 𝑝 +𝑆 𝑝
𝑆12 𝑝1
] [ ]=[ 11 1 12 2 ]=0
𝑆22 𝑝2 𝑆21 𝑝1 + 𝑆22 𝑝2
𝑝2 ] [𝑆11
𝑆21
𝑆12
]=[𝑆11 𝑝1 + 𝑆21 𝑝2
𝑆22
𝑆12 𝑝1 + 𝑆22 𝑝2 ]=0
Since the above two both are true, we must have S21=S12.
Microeconomics
Problem Set 1
NCKU Economics
7. Walrasian demand π‘₯(𝑝, 𝑀) is said to satisfy the uncompensated law of
demand (ULD) if for any two prices, 𝑝′ , 𝑝′′ and the given income, 𝑀 β€² , we
have (𝑝′′ βˆ’ 𝑝′ ) βˆ™ (π‘₯(𝑝′′ , 𝑀 β€² ) βˆ’ π‘₯(𝑝′ , 𝑀 β€² )) ≀ 0 , with strict inequality if
π‘₯(𝑝′ , 𝑀 β€² ) β‰  π‘₯(𝑝′′ , 𝑀 β€² ). Show that if π‘₯(𝑝, 𝑀) satisfies WL, hd0, and ULD for
any 𝑝′ , 𝑝′′ , and 𝑀 β€² , it will also satisfy WA. (Refer to p.112 of the textbook)
Take any (𝑝′ , 𝑀 β€² ) and (𝑝′′ , 𝑀 β€²β€² ) with π‘₯(𝑝′ , 𝑀 β€² ) β‰  π‘₯(𝑝′′ , 𝑀 β€²β€² ) and 𝑝′ βˆ™
π‘₯(𝑝′′ , 𝑀 β€²β€² ) ≀ 𝑀 β€² . To show WA, we have to show 𝑝′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) > 𝑀 β€²β€² .
𝑀′
𝑀′
𝑀′
Let 𝑝′′′ = 𝑀′′ 𝑝′′ , first note that π‘₯(𝑝′′′ , 𝑀 β€² ) = π‘₯ (𝑀′′ 𝑝′′ , 𝑀′′ 𝑀 β€²β€² ) = π‘₯(𝑝′′ , 𝑀 β€²β€² )
by hd0. By ULD, (𝑝′′′ βˆ’ 𝑝′ ) βˆ™ (π‘₯(𝑝′′′ , 𝑀 β€² ) βˆ’ π‘₯(𝑝′ , 𝑀 β€² )) ≀ 0, or equivalently 𝑝′′′ βˆ™
π‘₯(𝑝′′′ , 𝑀 β€² ) βˆ’ 𝑝′′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) βˆ’ 𝑝′ βˆ™ π‘₯(𝑝′′′ , 𝑀 β€² ) + 𝑝′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) ≀ 0.
Since 𝑝′ βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ) ≀ 𝑀 β€² or equivalently βˆ’π‘β€² βˆ™ π‘₯(𝑝′′′ , 𝑀 β€² ) + 𝑝′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) β‰₯ 0,
𝑀′
we must have 𝑝′′′ βˆ™ π‘₯(𝑝′′′ , 𝑀 β€² ) βˆ’ 𝑝′′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) < 0, thus
𝑀′
𝑀 β€²β€²
𝑝′′ βˆ™ π‘₯(𝑝′′ , 𝑀 β€²β€² ) βˆ’
𝑝′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) < 0 or 𝑝′′ βˆ™ π‘₯(𝑝′ , 𝑀 β€² ) > 𝑀 β€²β€² .
8. Let
[
𝑀 β€²β€²
π‘₯1
π‘₯
π‘₯ = [ 2] ,
π‘₯3
𝑔1 (π‘₯)
π‘₯1 + π‘₯2
𝑔2 (π‘₯)
π‘₯ +π‘₯
𝑔(π‘₯) =
= [ π‘₯2 + π‘₯3 ] ,
𝑔3 (π‘₯)
1
3
π‘₯1 + π‘₯2 + π‘₯3
[ 𝑔4(π‘₯) ]
𝑓(𝑔) = [
𝑓1 (𝑔)
]=
𝑓2 (𝑔)
βˆ’π‘”1 βˆ’ 𝑔2 βˆ’ 𝑔3 + 2𝑔4
]. Show that 𝐷π‘₯ 𝑓(𝑔(π‘₯)) = 𝐷𝑔 𝑓(𝑔)𝐷π‘₯ 𝑔(π‘₯).
𝑔1 + 𝑔2 + 𝑔3 + 𝑔4
𝑓(π‘₯) = [
0
0
]; 𝐷π‘₯ 𝑓(𝑔(π‘₯)) = [
3π‘₯1 + 3π‘₯2 + 3π‘₯3
3
βˆ’1 βˆ’1
𝐷𝑔 𝑓(𝑔)𝐷π‘₯ 𝑔(π‘₯) = [
1
1
1
βˆ’1 2 0
][
1 1 1
1
1
1
0
1
0 0
];
3 3
0
0
1
]=[
3
1
1
π‘₯1
9. Let π‘₯ = [π‘₯ ], and 𝑔(π‘₯) = π‘₯1 + π‘₯2 + π‘₯1 π‘₯2 . Show that
2
0 0
];;
3 3
πœ•π‘”(𝛼π‘₯)
πœ•π›Ό
= 𝐷𝛼π‘₯ 𝑔(𝛼π‘₯)π‘₯ ,
where 𝐷𝛼π‘₯ 𝑔(𝛼π‘₯) is the derivative of 𝑔(𝛼π‘₯) with respect 𝛼π‘₯ evaluated at
𝛼π‘₯ . Note that 𝑔(𝛼π‘₯) and 𝑔(π‘₯) are evaluating the same function at
different values.
𝑔(𝛼π‘₯) = 𝛼π‘₯1 + 𝛼π‘₯2 + 𝛼 2 π‘₯1 π‘₯2 ;
πœ•π‘”(𝛼π‘₯)
πœ•π›Ό
= π‘₯1 + π‘₯2 + 2𝛼π‘₯1 π‘₯2 ;
Microeconomics
Problem Set 1
NCKU Economics
𝑦1
Let 𝑦 = [𝑦 ] = 𝛼π‘₯,
2
𝐷𝛼π‘₯ 𝑔(𝛼π‘₯) = 𝐷𝑦 𝑔(𝑦) = [1 + 𝑦2
𝐷𝛼π‘₯ 𝑔(𝛼π‘₯)π‘₯=[1 + 𝛼π‘₯2
1 + 𝑦1 ] = [1 + 𝛼π‘₯2
1 + 𝛼π‘₯1 ];
π‘₯
1 + 𝛼π‘₯1 ] [π‘₯1 ]=π‘₯1 + π‘₯2 + 2𝛼π‘₯1 π‘₯2
2