Download CH 2 Powerpoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Right triangle trigonometry definitions.
Build a right triangle in the diagram over
the central angle.
Label the right triangle.
c is the
Label the right triangle using
theta(  ) as the reference angle.
This angle is always ACUTE!
B
c
a
HYPOTENUSE.
OPPOSITE of  .

A
The length Opposite of  .

The length of the Hypotenuse.
a is the side
b is thebside
C
ADJACENT to 
.
a
sin  

c
The length Adjacent of  .
b
cos  

The length of the Hypotenuse.
c
The length Opposite of  .
a
tan   

The length Adjacent of  .
b
SOH-CAH-TOA
I P Y
N P P
E O O
S T
I E
T N
E U
S
E
O
S
I
N
E
D
J
A
C
E
N
T
Y
P
O
T
E
N
U
S
E
A
N
G
E
N
T
P
P
O
S
I
T
E
D
J
A
C
E
N
T
Right triangle trigonometry definitions.
Build a right triangle in the diagram over
the central angle.
Label the right triangle.
c is the
Label the right triangle using
theta(  ) as the reference angle.
This angle is always ACUTE!
a2  b2  c2
B
c
HYPOTENUSE.
Pythagorean
Theorem
a a is the side
ADJACENT
OPPOSITE of  .

A
b
b is the side
The length Opposite of  .

The length of the Hypotenuse.
REMEMBER
C
ADJACENT of  .
OPPOSITE
ba
sin  

c
The length Adjacent of  .
ba
cos  

The length of the Hypotenuse.
c
The length Opposite of  .
ba
tan   

The length Adjacent of  .
ba
SOH-CAH-TOA
I P Y
N P P
E O O
S T
I E
T N
E U
S
E
O
S
I
N
E
D
J
A
C
E
N
T
Y
P
O
T
E
N
U
S
A
N
G
E
N
T
P
P
O
S
I
T
E
D
J
A
C
E
N
T
Find the 6 trigonometric functions with respect to  .
Circle the reference angle and label the
opposite, adjacent, and hypotenuse.
Find the value of the missing side, c.
a2  b2  c2
3 4 c
2
2
2
HYP.
c 5
c 5
OPP.
9  16  c 2
25  c 2
SOH-CAH-TOA
3
sin   
5
4
cos  
5
5
csc  
3
5
sec   
4
3
tan   
4
4
cot   
3
ADJ.
b
Special Right Triangle Relationships.
b2  b2  c2
2b  c
2
2
c  2b
2
45
2
cb 2
b
b
45 : 45 : 90
b:b:b 2
45
b
1:1: 2
1
2
sin 45 

2
2
2
cos45 
2
tan 45  1
c b 2
45
csc45  2
2
1
45
sec45  2
cot45  1
1
These answers are
considered exact values.
Special Right Triangle Relationships.
a 2  b 2  2a 
2
a 2  b 2  4a 2
b  3a
2
60
30
b 2  3a 2
ba 3
2a
2a
ba 3
2
30 : 60 : 90
a : a 3 : 2a
1: 3 : 2
60
a
a
2a
60
1
sin 30 
2
csc30  2
30
3
cos30 
2
2
2 3
sec30 

3
3
1
3
tan 30 

3
3
cot 30  3
2
3
60
1
3
sin 60 
2
1
cos60 
2
tan 60  3
csc 60 
2 3
3
sec60  2
cot 60 
3
3
Do you see a pattern?
Cofunction Identities.
Two positive angles are complimentary if
their sum is 90o. Our trigonometric
functions are identified with the prefix “Co”.
Sine & Cosine
Tangent & Cotangent
Secant & Cosecant
sin    cos90     ac
cos   sin 90     bc
tan    cot90     ba
cot   tan 90     ba
sec   csc90     bc
csc   sec90     ac
From the 30-60-90 Ex.
1
sin 30 
2
1
cos90  30  cos60 
2
cos   sin 90   
cos52  sin 90  52
cos52  sin 38
tan    cot 90   
tan 71  cot90  71
tan 71  cot19
sec   csc90   
sec24  csc90  24
sec24  csc66
sin    cos90   
sin   15  cos90    15
sin   15  cos75   
csc90    10  csc2  20
90    10  2  20
80    2  20
80  3  20
60  3
20  
Definition of Reference Angle.
Let  be a nonacute angle in standard position that lies in a quadrant. Its
reference angle is the positive acute angle   formed by the terminal side of
and the x – axis.

Find all six trigonometric function exact values of 210.
•Use special right triangles and reference angles to find the exact
values of the trigonometric functions. 30 : 60 : 90 45 : 45 : 90
1: 3 : 2
1:1: 2
opp
1
SOH – CAH - TOA
sin 210 

hyp
cos210 
2
adj
 3

hyp
2
tan 210 
1
3
opp


adj
3
 3
cot 210 
90
S
A
adj
210
180  3
30
1
opp
2
T
Reference angle
hyp
 3
adj

 3
1
opp
hyp
2
2 3
sec210 


adj
3
 3
csc210 
hyp
2

 2
opp  1
C
Use special right triangles and reference angles to find the exact
values of the trigonometric functions. 30 : 60 : 90 45 : 45 : 90
1: 3 : 2
1:1: 2
SOH – CAH - TOA
cos 240
S
opp
hyp
2
3
60
1
T
A
adj
Reference angle
tan 675
S
675
 240
C
1
adj

cos 240 
hyp
2
T
tan  675  
A
adj1
Reference angle
45
opp
2
hyp
1
C
opp
1

 1
adj
1
S
opp
A
hyp
2
3
2
adj
C
  225
 135
45
45
C
S
A
adj
3
30
60
1
Reference angle
A
T
opp
3
T
adj
 3
1

 2

2
2


2
1  3   1 
 2     
3
2
 4 3
S
A
hyp
120
60
1
T
S
C
2
 135
  225
hyp
T
 1 


3


2
opp
1
C
2
Give away
for 45o angle
MODE
Right now we want DEGREE mode, move cursor to DEGREE and hit ENTER
2nd APPS activate the ANGLE window.
x-1 button, Sine, Cosine, and Tangent
Degree symbol.
Minute symbol.
are to the right.

0.7571217563
1
cos97.977
-7.205879213
 tan 51.4283
-0.4067366431
  sin 1 0.96770915
  75.4  7524'
1.253948151
1
1.0545829

cos 
1
1
Second symbol.
cos  
 18.51470432
 1830'53"
1.0545829
ALPHA, +
F  W sin    2500 sin 2.5  109 lb
F  W sin    5000sin  6.1  531 lb
right
acute
C
A
B
complimentary
B
hyp.
Find angles first. 90  34.5  55.5
SOH-CAH-TOA
a
sin 34.5 
12.7
a  12.7  sin 34.5
b
cos34.5 
12.7
b  12.7  cos34.5
c  12.7
A
34.5
b
adj.
B  ____
55.5
7.2 in
a  _____
10.5 in
b  _____
opp.
a
C
Need to find the following:
hyp.
opp.
= 29.43
= 53.58
adj.
A  _____
33.3
90  33.3  56.7
56
.
7

B  _____
44.77
b  _____
A general rule is to always use the information you are given. We can find b by
the Pythagorean Theorem.
a b  c
2
2
2
b  c2  a2
b  53.582  29.432
Sides were given to 2 decimal
places … so b = 44.77
SOH-CAH-TOA
29.43
sin  A 
53.58
 29.43 
A  sin 1 

 53.58 
Make sure the MODE is
DEGREE.
SOH-CAH-TOA
hyp.
25
tan 20 
x
25
x  tan 20   x
x
tan 20
25
x

tan 20 tan 20
x
25
tan 20
y =opp.
57.635
40 x =adj.
h
68.687
20 adj.
25 opp.
hyp.
y
tan 40 
68.687
68.687  tan 40  y
h  25  57.635
h  82.635 ft
When a single angle is given, it is understood that the
Bearing is measured in a clockwise direction from due north.
N
N
N
45o
165o
225o
Starts at a Bearing starting on the north-south line
and uses an acute angle to show the direction, either east or west.
S 45o E
N 75o W
N
45o
S
75o
C
adj. x
61o
29 opp.
29
61
29
A
61
3.7mi
SOH-CAH-TOA
331o
B
hyp.
x
cos29 
3.7
x
3.7  cos29 
 3.7
3.7
x  AC  3.2mi
C
47 43o
3.5(22) = 77
4(22) = 88
47o
P
43
c
s2  p2  c2
77 2  882  c 2
S
c  772  882  117 nautical miles
h  27
hyp.
hyp.
adj.
SOH-CAH-TOA
h
tan 15 
x  50
x  50 tan 15 
h
 x  50
x  50
h  x  50 tan 15
opp.
adj.
Solve for x to find h.
h
tan 28 
x
h  x  tan 28
h
x  tan 28   x
x
50  tan 15
x
tan 28  tan 15
x  50 tan15  x  tan28
x  tan 15  50  tan 15  x  tan 28
 x  tan 15
 x  tan 15
50  tan 15  x  tan 28  x  tan 15
50  tan 15  xtan 28  tan 15
tan 28  tan 15 tan 28  tan 15
Related documents