Download Salters Advanced Chemistry Data Sheets - Benjamin

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Salters Advanced Chemistry
Data Sheets
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 363
M
▲
?
Data Sheets
Contents
Table
Data
▲
1
Fundamental constants and other useful constants
2
Standard temperature
3
Units of pressure
4
SI prefixes
5
Definition of billion
6
Use of parts per million (ppm)
7
The Periodic Table
8
Physical and thermochemical data for the first 36 elements
9
Standard enthalpy changes of atomisation for some elements
10
Electronegativity values for some elements on the Pauling scale
11
Ionic radii for some gaseous ions
12
First ionisation enthalpies for the first 36 elements
13
Electron affinities
14
Standard enthalpies of hydration of some positive ions (cations)
15
Lattice enthalpies for some ionic compounds
16
Standard molar enthalpy changes of formation of some inorganic compounds and ions
17
Solubility products
18
Ka and pKa values for some weak acids
19
Organic compounds: physical and thermochemical data
20
Bond lengths and bond enthalpies
21
Standard electrode potentials
22
Characteristic i.r. absorptions in organic molecules
23
Chemical shifts for some types of protons (1H) in n.m.r. spectra
24
The electromagnetic spectrum
Introduction
These Data Sheets contain some basic information that you will use throughout the Salters
Advanced Chemistry course. For more detailed information you will need to consult a data book
such as The Elements by John Emsley (Oxford, third edition, 1998) or S I Chemical Data by
Gordon Aylward and Tristan Findlay (Wiley, fourth edition, 1999).
The information in these Data Sheets is taken from these books, from where primary
references can be found, and from Inorganic Energetics by W E Dasent (Cambridge, second
edition, 1982) and the Salters Advanced Chemistry course.
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
363
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 365
DATA SHEETS: TABLES 1 – 6
M
Table 1: Fundamental constants
Quantity
▲
▲
?
Symbol
Value
Unit
8
speed of light in a vacuum
c
3.00 ¥ 10
m s–1
Planck constant
h
6.63 ¥ 10–34
J Hz–1
23
Avogadro constant
L
6.02 ¥ 10
mol–1
gas constant
R
8.31
J K–1 mol–1
Other useful constants
▲
Symbol
Value
Unit
molar volume of an ideal gas at s.t.p. (273 K and 1 atmosphere)
Vm
22.4
dm3 mol–1
specific heating capacity of water
cp
4.17
J g–1 K–1
Table 2: Standard temperature
For thermodynamic measurements, such as enthalpy and entropy changes and
standard electrode potentials, the standard temperature used is 298 K (25 °C)
unless stated.
For measurements of gas volumes, the standard temperature used is 273 K
(0 °C). Standard temperature and pressure (s.t.p.) is 273 K and 101.325 kPa.
Table 3: Units of pressure
Pressure is measured in pascals (Pa): 1 Pa = 1 N m–2.
An atmosphere (atm) is the pressure needed to push a column of mercury in
a barometer to a height of 760 mm (standard atmospheric pressure):
1 atm = 101.325 kPa.
Table 4: SI prefixes
The following prefixes are used to indicate decimal fractions or multiples of SI
units:
10–12
10–9
10–6
10–3
10–2
10–1
pico
nano
micro
milli
centi
deci
p
n
m
m
c
d
103
106
109
1012
kilo
mega
giga
tera
k
M
G
T
Table 5: Definition of billion
Throughout the course a billion refers to a thousand million: 1 billion = 1 ¥ 109.
Table 6: Use of parts per million (ppm)
Parts per million are frequently used to express low concentrations. It is
important to know exactly what the measurements refer to.
For mixtures of gases, parts per million by volume are usually used: ppm (by
volume). For example, the concentration of carbon dioxide in the atmosphere at
the time of publication is 367 ppm (by volume). This means that in 1 million
molecules of air there are 367 molecules of CO2; 367 ppm (by volume) is the
same as 0.0367% (by volume).
For solids and liquids, parts per million by mass are usually used. For
example, the concentration of pesticide residues in a plant may be measured in
ppm (by mass) of plant tissue. A pesticide concentration of 1 ppm means that 1 g
of plant tissue contains 1 ¥ 10–6 g (1 mg) of pesticide.
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
365
366
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
Ca
K
(226)
Ra
88
(223)
Fr
87
actinium
Ac
89
(227)
lanthanum
La
57
138.9
yttrium
protactinium
thorium
relative atomic mass
symbol
Pa
91
(231)
praseo–
dymium
Th
90
232.0
cerium
Pr
59
140.9
140.1
Ce
58
dubnium
Db
105
rutherfordium
(262)
Rf
104
tantalum
hafnium
(261)
Ta
73
Hf
72
181.0
niobium
zirconium
178.5
Nb
41
92.9
V
23
vanadium
50.9
Zr
40
91.2
Ti
22
titanium
47.9
Tc
43
(99)
Mn
25
manganese
54.9
Pm
61
(147)
bohrium
Bh
107
(264)
rhenium
Re
75
186.2
uranium
U
92
238.1
neptunium
Np
93
(237)
neodymium promethium
Nd
60
144.2
seaborgium
Sg
106
(266)
tungsten
W
74
183.9
molybdenum technetium
Mo
42
95.9
Cr
24
chromium
52.0
Mt
109
Hs
108
plutonium
Pu
94
(242)
samarium
Sm
62
150.4
americium
Am
95
(243)
europium
Eu
63
152.0
meitnerium
(268)
(269)
hassium
iridium
Ir
77
192.2
rhodium
Rh
45
102.9
Co
27
cobalt
58.9
osmium
Os
76
190.2
ruthenium
Ru
44
101.1
Fe
26
iron
55.9
d block
unununium
berkelium
Bk
97
(245)
terbium
Tb
65
158.9
f block
curium
Cm
96
(247)
gadolinium
Gd
64
157.3
(277)
mercury
Hg
80
200.6
cadmium
Cd
48
112.4
Zn
30
zinc
65.4
californium
Cf
98
(251)
dysprosium
Dy
66
162.5
ununbium
Uuu 112Uub
111
(272)
gold
Au
79
197.0
silver
Ag
47
107.9
Cu
29
copper
63.5
f block
ununnilium
Uun
110
(269)
platinum
Pt
78
195.1
palladium
Pd
46
106.4
Ni
28
nickel
58.7
einsteinium
Es
99
(254)
holmium
Ho
67
164.9
thallium
Tl
81
204.4
indium
In
49
114.8
Ga
31
gallium
69.7
Al
13
aluminium
27.0
B
5
boron
10.8
fermium
Fm
100
(253)
erbium
Er
68
167.3
ununquadium
Uuq
114
(285)
lead
Pb
82
207.2
tin
Sn
50
118.7
Ge
32
germanium
72.6
Si
14
silicon
28.1
C
6
carbon
12.0
6
mendelevium
Md
101
(256)
thulium
Tm
69
168.9
bismuth
Bi
83
209.0
antimony
Sb
51
121.8
As
33
arsenic
74.9
P
15
phosphorus
31.0
N
nobelium
No
102
(254)
ytterbium
Yb
70
173.0
ununhexium
Uuh
116
(289)
polonium
Po
84
(210)
tellurium
Te
52
127.6
Se
34
selenium
79.0
S
16
sulphur
32.1
O
8
oxygen
16.0
p block
14.0
5
7
nitrogen
An entry in brackets indicates the mass number of the longest-lived isotope of an element with no stable isotopes
lithium
Li
3
6.9
KEY
Actinide
elements
Lanthanide
elements
radium
barium
caesium
francium
137.3
Ba
56
132.9
strontium
Cs
55
rubidium
88.9
87.6
Sr
38
85.5
Rb
37
Y
39
21
scandium
Sc
45.0
20
calcium
19
potassium
40.1
39.1
Mg
12
magnesium
Na
11
sodium
atomic
number
7
6
5
4
3
24.3
23.0
Be
4
beryllium
Li
3
lithium
9.0
6.9
s block
4
Lr
103
lawrencium
(257)
Lu
71
lutetium
175.0
astatine
At
85
(210)
iodine
I
53
126.9
Br
35
bromine
79.9
Cl
17
chlorine
35.5
F
9
fluorine
19.0
7
?
1
hydrogen
3
Uuo
ununoctium
118
(293)
Rn
86
radon
(222)
Xe
54
xenon
131.3
Kr
36
krypton
83.8
Ar
18
argon
39.9
Ne
10
neon
20.2
He
2
helium
4.0
0
▲
H
1.0
Group
M
2
Period 1
2
▲
1
▲
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 366
DATA SHEETS: TABLE 7
Table 7: The Periodic Table
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 367
DATA SHEETS: TABLE 8
▲
▲
?
Table 8: Physical and thermochemical data
for the first 36 elements
▲
Z
Atomic number
St
Normal physical state at 298 K and 1 atm pressure (s, solid; l, liquid; g, gas)
A
Molar mass of the element (the mole applies to single atoms)
r
Tm
Tb
DHfus!
DHvap!
S!
Density at 298 K and 1 atm pressure (or density of liquid at Tb for gases)
sub
Melting point
Boiling point
Ï
Ì
Ó
M
at 1 atm except where stated otherwise
Standard molar enthalpy change of fusion at Tm and 1 atm
Standard molar enthalpy change of vaporisation at Tb and 1 atm
Standard molar entropy at 298 K and 1 atm
sublimes; ign ignites; * variable; † uncertain
Z
Element
St
A/
g mol–1
r/g cm–3
Tm /K
DHfus! /
kJ mol–1
DHvap!/
kJ mol–1
S!!/
J K–1 mol–1
0.46
0.08
134.7
308.8
538.9
130.7
126.2
29.1
9.5
5.9
105.0
–
0.72
0.44
5.10
710.9sub
–
5.58
6.82
6.55
5.7
2.4
191.6
205.1
202.8
27
1156
1363
2740
2628
0.32
2.64
9.04
10.7
39.6
1.74
89.0
128.7
293.7
383.3
146.3
51.2
32.7
28.3
18.8
683
553
718
718
239
–
2.51
–
1.23
6.41
–
51.9
–
9.62
20.40
22.8
41.1
31.8
–
223.1
154.8
64.1
41.4
34.6
30.6
Tb /K
1
2
3
4
5
hydrogen
helium
lithium
beryllium
boron
H
He
Li
Be
B
g
g
s
s
s
1.0
4.0
6.9
9.0
10.8
0.0720K
0.154K
0.53
1.85
2.34
14
126atm
454
1551±5
2573
6
6
7
8
9
carbon (graphite)
carbon (diamond)
nitrogen
oxygen
fluorine
C
C
N
O
F
s
s
g
g
g
12.0
12.0
14.0
16.0
19.0
2.26
3.51
1.0321K
2.0055K
1.5285K
3925–70sub
>3820
63
55
54
10
11
12
13
14
neon
sodium
magnesium
aluminium
silicon
Ne
Na
Mg
Al
Si
g
s
s
s
s
20.2
23.0
24.3
27.0
28.1
1.4429K
0.97
1.74
2.70
2.33
15
15
16
16
17
phosphorus (red)
phosphorus (white)
sulphur (rhombic)
sulphur (monoclinic)
chlorine
P
P
S
S
Cl
s
s
s
s
g
31.0
31.0
32.1
32.1
35.5
2.20
1.82
2.07
1.96
2.03113K
18
19
20
21
22
argon
potassium
calcium
scandium
titanium
Ar
K
Ca
Sc
Ti
g
s
s
s
s
40.0
39.1
40.1
45.0
47.9
1.6640K
0.86
1.55
2.99
4.54
84
337
1112
1814
1933
87
1047
1757
3104
3560
1.21
2.40
9.33
15.9
20.9
6.53
77.5
150.0
304.8
428.9
23
24
25
26
27
vanadium
chromium
manganese
iron
cobalt
V
Cr
Mn
Fe
Co
s
s
s
s
s
50.9
52.0
54.9
55.8
58.9
6.11
7.19
7.44
7.87
8.90
2160
2130±20
1517
1808
1768
3650
2945
2235
3023
3143
17.6
15.3
14.4
14.9
15.2
458.6
348.8
219.7
351.0
382.4
28.9
23.5
32.0
27.3
30.0
28
29
30
31
32
nickel
copper
zinc
gallium
germanium
Ni
Cu
Zn
Ga
Ge
s
s
s
s
s
58.7
63.5
65.4
69.7
72.6
8.90
8.96
7.13
5.91
5.32
1726
1357
693
303
1211
3005
2840
1180
2676
3103
17.6
13.0
6.67
5.59
31.7
371.8
304.6
115.3
256.1
334.3
29.9
33.2
41.6
40.9
31.1
33
34
35
36
arsenic (grey)
selenium
bromine
krypton
As
Se
Br
Kr
s
s
I
g
74.9
79.0
79.9
83.8
5.78
4.79
4.05123K
2.82117K
109028atm
490
266
117
24
371
922
934
1683
68343atm
317
386
392
172
20
4
1620
3243
3931
5100sub
–
77
90
85
0.12
0.02
4.60
9.80
22.2
889sub
958
332
121
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
27.7
5.1
10.8
1.64
31.9
26.3
30.0
9.05
35.1
42.4
152.2
164.1
367
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 368
DATA SHEETS: TABLES 9–11
M
Table 9: Standard enthaply changes of
atomisation for some elements
▲
The standard enthalpy change of atomisation (DHat!) is the enthalpy change that
occurs when 1 mole of atoms in the gaseous state is formed from the element in its
standard state, eg:
?
▲
Na(s)
Æ
Cl2(g) Æ
Na(g)
Cl(g)
The values given are 298 K.
▲
Element
D Hat! /kJ mol–1
D Hat!/kJ mol–1
Element
H
+218
Al
+330
Li
Na
K
Rb
Cs
+159
+107
+89
+81
+76
Cu
Zn
Ag
Hg
+337
+130
+285
+61
Be
Mg
Ca
Sr
Ba
+324
+147
+178
+164
+180
C (graphite)
Si
+717
+450
N
P
+473
+317
O
S
+249
+277
Element
D Hat!/kJ mol–1
F
Cl
Br
I
+79
+121
+112
+107
Table 10: Electronegativity values for some
elements on the Pauling scale
The electronegativity of an element is a measure of its ability to attract the
electron pair in a covalent bond, relative to that of other elements.
H
2.2
Li
1.0
Be
1.6
B
2.0
C
2.6
N
3.0
O
3.4
F
4.0
Na
0.9
Mg
1.3
Al
1.6
Si
1.9
P
2.2
S
2.6
Cl
3.2
K
0.8
Ca
1.0
Br
3.0
Rb
0.8
Sr
1.0
I
2.7
Table 11: Ionic radii for some gaseous ions
Positive ions
Ion
Radius/nm
Li+
0.078
+
368
Ion
2+
Negative ions
Radius/nm
Ion
3+
Radius/nm
Ion
Radius/nm
Ion
Radius/nm
O2–
0.132
F–
0.133
–
Na
0.098
Mg
0.078
K+
0.133
Ca2+
0.106
Br –
0.196
Rb+
0.149
Sr2+
0.127
I–
0.220
Al
0.057
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
Cl
0.181
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 369
DATA SHEETS: TABLES 12–13
M
▲
?
Table 12: First ionisation enthalpies for the
first 36 elements
The first ionisation enthalpy (DHi(1)) is the enthalpy change under standard
conditions at 298 K for the reaction
X(g) Æ X+(g) + e–
Element
DHi(1)/kJ mol–1
1
H
1318
2
He
2379
3
Li
519
▲
Z
▲
Element
DHi(1)/kJ mol–1
19
K
425
20
Ca
596
21
Sc
637
Z
4
Be
905
22
Ti
664
5
B
807
23
V
656
6
C
1092
24
Cr
659
7
N
1407
25
Mn
723
8
O
1320
26
Fe
765
9
F
1687
27
Co
766
Ne
2087
28
Ni
743
10
11
Na
502
29
Cu
751
12
Mg
744
30
Zn
912
13
Al
583
31
Ga
585
14
Si
793
32
Ge
768
15
P
1018
33
As
953
16
S
1006
34
Se
947
17
Cl
1257
35
Br
1146
18
Ar
1526
36
Kr
1357
Ionisation energy represents a change in the internal energy (DU ) of the
process. The data given in this course have been corrected so that the values are
given in terms of enthalpy changes.
Table 13: Electron affinities
The first electron affinity (DHEA!(1)) of an element is the enthalpy change that
occurs when 1 mole of atoms in the gaseous state each gain a single electron to
form singly charged ions under standard conditions at 298 K:
C(g) + e– Æ C–(g)
The second electron affinity (DHEA!(2)) refers to the process:
C–(g) + e– Æ C2–(g)
Element
DHEA!(1)/kJ mol–1 DHEA!(2)/kJ mol–1
H
–73
Li
Na
Element
DHEA!(1)/kJ mol–1 DHEA!(2)/kJ mol–1
–60
–53
O
S
–141
–200
F
–328
K
–48
Cl
–349
Rb
–47
Br
–324
Cs
–46
I
–259
Be
–18
Ne
+29*
Mg
–21
Ar
+35*
Ca
–186
Kr
+39*
Sr
–146
Xe
+41*
Ba
–46
+753
+545
* Calculated values
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
369
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 370
DATA SHEETS: TABLES 14 –15
Table 14: Standard enthalpies of hydration
of some positive ions (cations)
M
▲
The enthalpy of hydration (DHhyd!) is the enthalpy change for the reaction
Xn+(g) + aq Æ Xn+(aq)
?
▲
The values quoted refer to formation of a solution of concentration 1 mol dm–3
at 298 K.
Ion
DHh yd! / kJ mol–1
Ion
▲
DHh yd! / kJ mol–1
Ion
DHh yd! / kJ mol–1
Al3+
–4680
Li+
–520
Na+
–406
Mg2+
–1926
K+
–320
Ca2+
–1579
Rb+
–296
Sr2+
–1446
Table 15: Lattice enthalpies for some ionic
compounds
The lattice enthalpy (DHLE!) is defined in this course as the standard enthalpy
change when 1 mole of solid is formed from isolated gaseous ions at 298 K.
For singly charged ions, it is the enthalpy change for the reaction
M+(g) + X–(g) Æ MX(s)
Using this definition, lattice enthalpies are always negative quantities. (You may
see lattice enthalpy defined for the reverse reaction is some books. In this case,
it is a positive quantity.)
Compound
370
DHLE!/kJ mol–1
Compound
DHLE!/kJ mol–1
Li2O
–2806
Na2O
–2488
MgO
–3800
K2O
–2245
CaO
–3419
Rb2O
–2170
SrO
–3222
LiF
–1047
NaF
–928
MgF2
–2961
KF
–826
CaF2
–2634
LiCl
–862
MgCl2
–2523
NaCl
–788
CaCl2
–2255
KCl
–717
Compound
Al2O3
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
DHLE!/kJ mol–1
–15 916
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 371
DATA SHEETS: TABLES 16–18
M
▲
▲
?
Table 16: Standard molar enthalpy changes
of formation (DHf!) of some inorganic
compounds and ions
The values given are at 298 K and 1 atm pressure.
Compound/ ion
State
DHf!/kJ mol–1
Compound/ ion
State
DHf!/kJ mol–1
▲
CO
CO2
CO32–
g
g
aq
–111
–393
–675
NO
NO2
HNO3
g
g
l
+90
+33
–174
CaCO3
Ca2+
s
aq
–1207
–543
H2O
H2O
HF
HCl
HBr
HI
l
g
g
g
g
g
–286
–242
–273
–92
–36
+26
SO2
SO3
H2SO4
S2–
SO42–
g
l
l
aq
aq
–297
–441
–814
+33
–909
Table 17: Solubility products
For a sparingly soluble salt M+X– in contact with its saturated solution, the
solubility product Ksp is given by
Ksp = [M+(aq)] [X–(aq)]
The values given are at 298 K unless stated otherwise.
Compound
Ksp /mol2 dm–6
AgCl
AgBr
AgI
1.8 ¥ 10
5.0 ¥ 10–13
8.3 ¥ 10–17
BaCO3
BaC2O4
BaCrO4
BaSO4
2.0
1.7
2.1
1.1
CaCO3
CaC2O4
CaSO4
3.3 ¥ 10–9
2.3 ¥ 10–9
2.4 ¥ 10–5
¥
¥
¥
¥
Ksp /mol2 dm–6
Compound
–10
10–9
10–7
10–10
10–10
FeS
8.0 ¥ 10–19
MgCO3
2.0 ¥ 10–5
PbCO3
PbCrO4
PbSO4
PbS
7.4
2.5
1.6
3.0
SrCO3
5.4 ¥ 10–10
ZnCO3
1.4 ¥ 10–11
¥
¥
¥
¥
10–14
10–14
10–8
10–28
Table 18: Ka and pKa values for some weak
acids
For a weak acid HA, the acidity constant Ka is given by
Ka =
[H+(aq)] [A–(aq)]
and pKa = –lg Ka
[HA(aq)]
The values given are at 298 K.
Acid
methanoic
ethanoic
propanoic
1-butanoic
benzoic
chloric(I)
hydrocyanic
nitrous (nitric(III))
Formula
HCOOH
CH3COOH
CH3CH2COOH
CH3CH2CH2COOH
C6H5COOH
HClO
HCN
HNO2
Ka /mol dm–3
1.6
1.7
1.3
1.5
6.3
3.7
4.9
4.7
¥
¥
¥
¥
¥
¥
¥
¥
–4
10
10–5
10–5
10–5
10–5
10–8
10–10
10–4
pKa
3.8
4.8
4.9
4.8
4.2
7.4
9.3
3.3
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
371
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 372
DATA SHEETS: TABLE 19
Table 19: Organic compounds: physical and
thermochemical data
▲
St
?
▲
M
r
Tm
Tb
DHc!
DHf!
Normal physical state at 298 K and 1 atm pressure (s, solid; l, liquid;
g, gas)
Molar mass of the compound
Density at 298 K and 1 atm pressure (or density of liquid at Tb for gases)
Melting point
at 1 atm pressure
Boiling point
Standard molar enthalpy change of combustion at 298 K
Standard molar enthalpy change of formation at 298 K
▲
Compound
372
Ï
Ì
Ó
M
Formula
St
M/g mol–1
r/g cm–3
Tm /K
Tb /K
DHc!/ kJ mol–1
DHf!/kJ mol–1
Straight-chain alkanes
methane
ethane
propane
butane
pentane
hexane
heptane
octane
nonane
decane
undecane
dodecane
eicosane
CH4
CH3CH3
CH3CH2CH3
CH3(CH2)2CH3
CH3(CH2)3CH3
CH3(CH2)4CH3
CH3(CH2)5CH3
CH3(CH2)6CH3
CH3(CH2)7CH3
CH3(CH2)8CH3
CH3(CH2)9CH3
CH3(CH2)10CH3
CH3(CH2)18CH3
g
g
g
g
l
l
l
l
l
l
l
l
s
16.0
30.1
44.1
58.1
72.1
86.2
100.2
114.2
128.3
142.3
156.3
170.3
282.5
0.466liq
0.572liq
0.585liq
0.601liq
0.621
0.655
0.680
0.698
0.714
0.726
0.737
0.745
0.785
90.5
89.7
85.3
134.6
143.3
177.7
182.4
216.2
219.5
243.3
247.4
263.4
309.4
111.5
184.4
230.9
272.5
309.1
341.7
371.4
398.7
423.8
447.1
468.9
489.3
616.8
–890
–1560
–2220
–2877
–3509
–4163
–4817
–5470
–6125
–6778
–7431
–8089
–13300
Branched alkanes
2-methylpropane
2-methylbutane
2-methylpentane
2-methylhexane
2-methylheptane
2,2-dimethylpropane
(CH3)2CHCH3
(CH3)2CHCH2CH3
(CH3)2CH(CH2)2CH3
(CH3)2CH(CH2)3CH3
(CH3)2CH(CH2)4CH3
C(CH3)4
g
l
l
l
l
g
58.1
72.2
86.2
100.2
114.2
72.2
0.551liq
0.615
0.649
0.679
0.698
0.585liq
113.4
113.1
119.3
154.8
164.1
256.4
261.3
300.9
333.3
363.1
390.7
282.5
–2868
–3504
–4157
–4811
–5465
–3514
–135
–179
–205
–230
–255
–190
Cycloalkanes
cyclopropane
cyclobutane
cyclopentane
cyclohexane
cycloheptane
cyclooctane
(CH2)3
(CH2)4
(CH2)5
(CH2)6
(CH2)7
(CH2)8
g
g
l
l
l
l
42.1
56.1
70.1
84.2
98.2
112.2
0.720liq
0.689liq
0.740
0.774
0.810
0.835
145.6
182.3
179.1
279.6
261.1
287.4
240.2
285.5
322.3
353.7
391.6
421.1
–2091
–2746
–3291
–3920
–4598
–5267
+53
+27
–107
–156
–157
–168
Alcohols
methanol
ethanol
propan-1-ol
propan-2-ol
butan-1-ol
pentan-1-ol
hexan-1-ol
heptan-1-ol
octan-1-ol
ethane-1,2-diol
propane-1,2,3-triol
2-methylpropan-2-ol
cyclohexanol
CH3OH
CH3CH2OH
CH3CH2CH2OH
CH3CH(OH)CH3
CH3(CH2)2CH2OH
CH3(CH2)3CH2OH
CH3(CH2)4CH2OH
CH3(CH2)5CH2OH
CH3(CH2)6CH2OH
CH2(OH)CH2OH
CH2(OH)CH(OH)CH2OH
(CH3)3COH
CH2(CH2)4CHOH
l
l
l
l
l
l
l
l
l
l
l
l
s
32.0
46.1
60.1
60.1
74.1
88.2
102.2
116.2
130.2
62.1
92.1
74.1
100.2
0.787
0.785
0.799
0.781
0.806
0.811
0.816
0.819
0.822
1.109
1.260
0.781
0.962
175.3
158.9
146.8
184.5
183.7
194.8
228.4
239.0
258.1
257.4
293.1
298.7
298.2
337.7
351.3
370.2
355.3
390.7
411.0
430.1
449.2
468.2
471.1
563.1
355.6
434.0
–726
–1367
–2021
–2006
–2676
–3331
–3984
–4638
–5294
–1189
–1655
–2644
–3728
–239
–277
–303
–317
–327
–354
–378
–403
–427
–455
–669
–359
–349
Carboxylic acids
methanoic (formic)
ethanoic (acetic)
propanoic
butanoic
HCOOH
CH3COOH
CH3CH2COOH
CH3CH2CH2COOH
l
l
l
l
46.0
60.1
74.1
88.1
1.214
1.044
0.998
0.952
281.4
289.7
252.3
267.3
373.6
390.9
413.8
436.3
–254
–874
–1527
–2183
–425
–485
–511
–534
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
–74.8
–84.7
–104
–126
–173
–199
–224
–250
–275
–301
–327
–351
–
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 373
DATA SHEETS: TABLES 20 –21
M
▲
Table 20: Bond lengths and bond enthalpies
L
Bond length
E(X–Y) Bond enthalpy at 298 K and 1 atm pressure
Bond
▲
?
▲
Br—Br
Br—H
Cl—Cl
Cl—H
F—F
F—H
I—I
H—I
H—H
H—Si
H—N
H—P
H—O
H—S
N—N
N=N
N∫N
O—O (in H2O2)
L/nm
E(X–Y)/kJ mol–1
0.228
0.141
0.199
0.127
0.142
0.092
0.267
0.161
0.074
0.148
0.101
0.144
0.096
0.134
0.145
0.120
0.110
0.148
192.9
366.3
243.4
432.0
158
568.0
151.2
298.3
435.9
318
391
321
464
364
158
410
945.4
144
Bond
L/nm
E(X–Y)/kJ mol–1
O—O (in O3)
O =O
Si —Si
O—Si
P—P (in P4)
P∫P (in P2)
C—C*
C =C*
C ∫C*
C —H*
C —F*
C —Cl*
C—Br*
C —I*
C —O*
C —O (in CH3OH)
C =O (in CO2)
C =0*
0.128
0.121
0.235
0.161
0.221
0.189
0.154
0.134
0.120
0.108
0.138
0.177
0.194
0.214
0.143
0.143
0.116
0.123
302
498.3
226
466
198
485
347
612
838
413
467
346
290
228
358
336
805
745
* Average bond enthalpies
Table 21: Standard electrode potentials
The values given are at 298 K.
E!!/V
Half-reaction
least oxidising
Ø
Li+(aq) + e–
K+(aq) + e–
Ca2+(aq) + 2e–
Na+(aq) + e–
Mg2+(aq) + 2e–
Al3+(aq) + 3e–
Zn2+(aq) + 2e–
Fe2+(aq) + 2e–
Ni2+(aq) + 2e–
Sn2+(aq) + 2e–
Pb2+(aq) + 2e–
2H+(aq) + 2e–
Sn4+(aq) + 2e–
Cu2+(aq) + 2e–
O2(g)+2H2O(l) + 4e–
Cu+(aq) + e–
I2(aq) + 2e–
Fe3+(aq) + e–
Ag+(aq) + e–
Br2(aq) + 2e–
O2(g) + 4H+(aq) + 4e–
Cr2O72– (aq) + 14H+(aq) + 6e–
Cl2(aq) + 2e–
MnO4–(aq) + 8H+(aq) + 5e–
≠
most oxidising
most reducing
Ø
Æ Li(s)
Æ K(s)
Æ Ca(s)
Æ Na(s)
Æ Mg(s)
Æ Al(s)
Æ Zn(s)
Æ Fe(s)
Æ Ni(s)
Æ Sn(s)
Æ Pb(s)
Æ H2(g)
Æ Sn2+(aq)
Æ Cu(s)
Æ 4OH–(aq)
Æ Cu(s)
Æ 2I–(aq)
Æ Fe2+(aq)
Æ Ag(s)
Æ 2Br –(aq)
Æ 2H2O(aq)
Æ 2Cr3+(aq) + 7H2O(l)
Æ 2Cl–(aq)
Æ Mn2+(aq) + 4H2O(l)
≠
least reducing
–3.04
–2.92
–2.84
–2.71
–2.36
–1.68
–0.76
–0.44
–0.26
–0.14
–0.13
0.00
+0.15
+0.34
+0.40
+0.52
+0.54
+0.77
+0.80
+1.07
+1.23
+1.36
+1.36
+1.51
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
373
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 374
DATA SHEETS: TABLE 22
Table 22: Characteristic i.r. absorptions in
organic molecules
M
▲
M
S
*
▲
?
Medium
Strong
hydrogen-bonded
Wavenumber/cm–1
Intensity
alkanes
2850–2950
M–S
alkenes, arenes
3000–3100
M–S
alkynes
ca 3300
S
alkenes
1620–1680
M
arenes
several peaks in range
variable
Bond
Location
C— H
▲
C= C
1450–1650
C∫ C
alkynes
2100–2260
M
C= O
aldehydes
1720–1740
S
ketones
1705–1725
S
carboxylic acids
1700–1725
S
esters
1735–1750
S
amides
1630–1700
M
C— O
alcohols, ethers, esters
1050–1300
S
C∫ N
nitriles
2200–2260
M
C—F
C—Cl
fluoroalkanes
1000–1400
S
chloroalkanes
600–800
S
C—Br
bromoalkanes
500–600
S
O—H
alcohols, phenols
3600–3640
S
*alcohols, phenols
3200–3600
S (broad)
*carboxylic acids
2500–3200
M (broad)
N—H
374
primary amines
3300–3500
M–S
amides
ca 3500
M
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 375
DATA SHEETS: TABLE 23
M
Table 23: Chemical shifts for some types of
protons (1H) in n.m.r. spectra
▲
Chemical shifts are for hydrogen (1H) relative to TMS (tetramethylsilane).
Chemical shift (d) in ppm from TMS is given by
where B is the strength of the applied magnetic field at resonance.
R represents an alkyl group
R— CH3
0.8–1.2
R— CH2— R
1.4
Chemical shift (d)
in approximate region of
Type of proton
— O— CH3
(alcohol)
3.3
— O— CH2— R
(alcohol)
3.6
R— C— O— CH3
(ester)
3.7
=
R
1.5
C= C— CH3
1.6
C= C— CH2— R
2.3
2.3
R— C— CH3
2.2
=
— CH3
O
O
R— CH2— Cl
3.6
R— CH2— Br
3.5
R— CH= CH— R
4.5–6.0
R— CH= CH— C—
6.0–8.0
=
R— CH— R
O
—H
R— C= O
R— C— CH2— R
2.4
=
6.0–9.0
(aldehyde)
10.0
H
O
2.6
=
— C— CH3
R— OH
0.5–4.5*
— OH
(amine)
2.3
N— CH2— R
(amine)
2.5
4.5–10.0*
R— NH2
(amine)
0.5–6.0*
R— C— NH2
(amide)
5–12*
(acid)
9–15*
=
N— CH3
O
R— C— N— CH3
O
(amide)
2.9
R— C— OH
=
▲
Chemical shift (d)
in approximate region of
Type of proton
=
▲
BTMS – Bsample
¥ 106
BTMS
O
?
O
* Signals from hydrogens in — OH and — NH— groups in alcohols, phenols,
carboxylic acids, amines and amides are very variable and often broad. The
chemical shift is sensitive to temperature, nature of the solvent and the
concentration. The stronger the hydrogen bonding the larger the chemical shift.
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
375
10509-29P363-376-GECKO.LTD 7/3/02 4:27 pm Page 376
DATA SHEETS: TABLE 24
Table 24: The electromagnetic spectrum
radiofrequency
▲
?
106
Frequency /Hz
107
108
103
109
1010
1
infrared
1011
1012
1013
1014
10
ultraviolet
1015
1016
10
X-rays
1017
1018
-rays
1019
1020
10
▲
Wavelength /m
microwave
visible
M
Enlargement of visible region
5
violet
invisible
ultraviolet
Converting frequencies to wavelengths
λ=
c
3.00 ¥ 108 m s–1
=
n
n
For l measured in nm and ν in s–1(Hz)
l=
3.00 ¥ 1017 nm s–1
n
Relationship between energy, wavelength, frequency and
wavenumber
Regions of ultraviolet radiation
u.v. (A):
u.v. (B):
u.v. (C):
376
400 nm–320 nm
320 nm–280 nm
< 280 nm
„ Salters Advanced Chemistry 2000 – see Copyright restrictions
invisible
infrared
6
7
n /1014 Hz
700
red
600
yellow
orange
8
500
green
450
blue-green
400
blue
Frequency
390
blue-violet
Wavelength l /nm
350 360 370 380
Related documents