Download 3. Network thoerem

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Network Theorems
Mesh analysis
 Nodal analysis
 Superposition
 Thevenin’s Theorem
 Norton’s Theorem
 Delta-star transformation

Direct application in conjunction with
Ohm’s law
 Indirect application in conjunction with
resistance
 Simultaneous equations

I
Determine current and source
e.m.f
E
V2
V3
Since R3 and R4 are in parallel
V1
R3
16
R1
8
R2
6 I =3A
4
R4
8
V3  I 4 R4  3  8  24V  I 3 R3  I 3 16
Therefore
24
I3 
 1.5 A
16
By Kirchoff’s first law
I  I 3  I 4  1.5  3  4.5 A
By Kirchoff’s second law
Also
V1  IR1  4.5  8  36 V
V2  IR2  4.5  6  27 V
E  V1  V2  V3  36  27  24  87 V
Determine I1, E, I3 and I
V1 27
I1 

 3A
R1 9
V2  I1R2  315  45V
By Kirchoff’s second law
E  V  V1  V2  27  45  72V
V 72
Also
I3 

 9A
R3 8
By Kirchoff’s first law
I  I1  I 3  3  9  12 A
I
I1
V1
V
I3
R1

V3
E
V2
R2

R3

Power dissipated in R3 is
20W. Calculate I3, R1,I1, I2
and E
a
5A
V10  110  10V
P  20W  10  I 3

E
20
I3 
 2A
10
I1
1
V1
b

1A
I3
2
R1
3
R3


20  I 3 R3  2  R3
2
I2
2
d
c
By Kirchoff’s first law in node a
R3  5 
I1  5  I 2  5  3  2 A
By Kirchoff’s first law in node b
V1 22
R1  
 11
I1
2
I 2  I3 1  2  1  3A
By Kirchoff’s second law in loop 2
V1  6  10  6  22V
P.D across 1  is 5 X 1=5V
E  V  5  22  27V
I
Determine current I and I4
E=87V
R1
8
R2
6
V1
V2
First find the total effective resistance
R3 R4
16  8
Re 

 5.33 
R3  R4 16  8
R3
16
V3
R4
8
Rt  R1  R2  Re  8  6  5.33  19.33 
Then
V
87
I

 4.5 A
Rt 19.33
Using current division
R3
16
I4 
I
 4.5  3 A
R3  R4
16  8
I
V
Rt
Determine VAB
Effective resistance for parallel
resistor 10 // 15  and
16//16
10 
15 
VAB
A
12V
10 15
Ra 
6
10  15
VAC
VBC
6

12  6V
66
8

12  8V
8 4
B
6
16 
16 
C
16 16
Rb 
8
16  16
Using voltage division
4
6
4
VAB
A
12V
VAC
B
6  VBC
8
C
Then
VAB  VAC  VBC  6  8  2V
I=5A
A
Calculate the current in each resistor
Applying Kirchoff’s 2nd law for loop 1
3
1

D
B
40V
40  3I1  14( I1  I 2 )
40  17I1 14I 2

3

---(a)
Applying Kirchoff’s 2nd law for loop 2
C
0  28I  I1   8I 2  3I1
 28I  31I1  8I 2
But
Thus
I  5A
140  31I1  8I 2

2
I
A
3I1
---(b)
1
I2
D
I1
2


I-I1
B
40V
I1-I2
---(b)
I-I1+I2
3


C
continue
Solving the 2 simultaneous equations
(a) X 4
160  68I1  56I 2
---(c)
(b) X 7
980  217I1  56I 2
---(d)
Then (c) + (d)
1140  285I1
I1  4 A
In 3 resistor
Substitute in (b)
140  124  8I 2
I2  2A
In 8 resistor
In 28 resistor
I  I1  5  4  1A
In 14  resistor
I1  I 2  4  2  2 A
In 4  resistor
I  I1  I 2  5  4  2  3A
I1
Calculate the current in the network
I3
Applying Kirchoff’s 2nd law for loop 1
10  19I1  18I 2
1
---(a)
10V
Applying Kirchoff’s 2nd law for loop 2
20  2I 2  18I1  I 2 
20  18I1  20I 2
---(b)
100  190I1  180I 2 ---(c)
(b)X 9
180  162I1  180I 2
I1  2.85 A

2
I 3  I1  I 2
20V
Substitute I1 in(a)
(a)x10
(d)-(c) we get
18
1
10  1I1  18( I1  I 2 )
I2
---(d)
10  54.34  18I 2
I 2  3.57 A
Current in 18  resistor
I 3  3.57  2.85  0.72 A
Calculate the current in the network
I1
I3
Applying Kirchoff’s 2nd law for loop 2
Current in 18  resistor
18
1
20  18I 3
I2
1
2
10V
20
I3 
 1. 1 A
18
Applying Kirchoff’s 2nd law for outside loop
20 10  I1 1
I1  10 A
Current in 1  resistor
I 2  (10)  1.1  11.1A
20V
A
The network shown is a 3 cells having
an internal resistance of 30 . Calculate
the current in the network
R=30
E=1.5V
E=1.5V
R=30
Applying Kirchoff’s 2nd law
C
1.5  I  30 1.5  I  30 1.5  I  30  0
B
R=30
E=1.5V
4.5  90I  0
4.5
I
 0.05 A
90
The voltage drop due to internal resistor is 0.05 x30=1.5V
Thus there is no potential different between two terminals
Create loop’s current rather than branch
current
 Use Kirchoff’s second (voltage ) law
 Ohm’s law to calculate p.d
 Branch is calculated by taking the
algebraic sum of the loop currents

Calculate the current in each branch
First create loop current ,i.e I1 , I2, I3 as shown
20
30
20
40
3
30
60
50
10
60
20V
50V
40
50
1
100V
I3
2
I1
100V
20V
10
I2
50V
continue
In loop 1
100  20  I1 60  30  50  I 2 50  I 3 30
80  140I1  50I 2  30I 3
---(a)
In loop 2
50  20  I 2 50  40  10  I1 50  I 3 40
20
70  50I1  100I 2  40I 3
3
---(b)
In loop 3
30
0  I 3 30  20  40  I1 30  I 2 4060
0  30I1  40I 2  90I 3
---(c)
I3
40
50
1
2
I1
100V
20V
10
I2
50V
continue
Solving these equations
I 3  1.50 A
I1  1.65 A
I 2  2.16 A
Current in 60
 I1  1.65 A
In direction of I1
Current in 30
 I1  I 3  0.15 A
In direction of I1
Current in 50
 I 2  I1  0.51A
In direction of I2
Current in 40
 I 2  I 3  0.66 A
In direction of I2
Current in 10
 I 2  2.16 A
In direction of I2
Current in 20
 I 3  1.50 A
In direction of I3
Choose reference node where all nodes
can refer
 Assign currents going to/out the nodes
 Assign voltage at nodes as V1 , V2,
V3….which refer to reference node
 Apply Kirchoff’s current law at each node
 Relate the voltage , resistance andcurrent
using ohm’s law
 Solve the equations obtained

node 1
Calculate V1 and V2
At node 1
1A
I3  I 4
V2

5
reference
I1 node 1
V1 I2
Simplified
At node 2
node 2
V1
I1  I 2  I 3
V1 V1  V2
1 
5
3
 1 1  V2
V1      1
5 3 3

….(a) 1A

node 2
I3
I4

5
reference
V1  V2 V2

3
7
V2
Simplified
V1
1 1
V2     0
3
3 7
continue
…..(b)
8V1  5V2  15
Substitute V2 we have
35V1
8V1 
 15
10
node 2
I3
I4
reference
7
V2  V1
10
10
V1  V
3
7 10 7
V2    V
10 3 3
V2

1A
7V1 V2 7  3  0
7V1  10V2
(a) X 15

5
Solve for equations (a) and (b)
(b) X 21
I1 node 1
V1 I2
Node 1
V1
Calculate V1 and V2 and
current in 8
At node 1
I1  I 2  I 3
4  V1 V1 V1  V2
 
5
15
10
5
24  6V1  2V2  3V1  3V2
….(a)
6V

Node 1
V1
I3
I2
4V

15
I1
Simplified
11V1  3V2  24

5
4V
Node 2
V2
reference
node
Node 2
V2


I4

15
reference
node
I5
6V
continue
I1
At node 2
I3  I 4  I5
5
Node 1
V1
I3
I2
V1  V2 V2 V2  6
 
10
8
12
4V
Node 2
V2

I5

I4

15
reference
node
Simplified
12V1 12V2  15V2  10V2  60
12V1  37V2  60
….(b)
Solving the simultaneous equations (a) and (b)
V1  2.88V
V2  2.55V
I 8
V2

 0.32 A
8
6V
The superposition states that in any network
containing more than one source , the current
in , or the p.d. across in any branch can be
found by considering each source separately
and adding their effects: omitted sources of
e.m.f are replaced by resistance equal to
their internal resistances.
Separating the network into several circuit contenting
only one source
I1
Original network
1
I1+I2
Separating into 2 networks
I1b
10V

18
10V
1
I2
I2b
18 
I1b+I2b
20V
I1c
1
I2c
18
I1c+I2c

20V
I1b
Network 1
Total resistance
2 18
1
 2.8 
2  18
1
10V
Thus
V
10
I1b 

 3.57 A
Rtotal 2.8
18

 3.57  3.21A
2  18
and
I 2b
Also
I1b  I 2b  3.57  3.21  0.36 A
I2b
18 
I1b+I2b
I1c
Network 2
Total resistance
118
2
 2.95 
1  18
Thus
V
20
I 2c 

 6.78 A
Rtotal 2.95
and
18
I1c  
 6.78  6.42 A
1  18
Also
1
I 2c  I1c  6.78  6.42  0.36 A
I2c
18
I1c+I2c

20V
I1
combination
1
10V
I2
18
I1+I2

20V
Thus
I1  I1b  I1c  3.57  6.42  2.85 A
and
I 2  I 2b  I 2c  3.21  6.78  3.57 A
Also
I1  I 2  2.85  3.57  0.72 A
Related documents