Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Network Theorems Mesh analysis Nodal analysis Superposition Thevenin’s Theorem Norton’s Theorem Delta-star transformation Direct application in conjunction with Ohm’s law Indirect application in conjunction with resistance Simultaneous equations I Determine current and source e.m.f E V2 V3 Since R3 and R4 are in parallel V1 R3 16 R1 8 R2 6 I =3A 4 R4 8 V3 I 4 R4 3 8 24V I 3 R3 I 3 16 Therefore 24 I3 1.5 A 16 By Kirchoff’s first law I I 3 I 4 1.5 3 4.5 A By Kirchoff’s second law Also V1 IR1 4.5 8 36 V V2 IR2 4.5 6 27 V E V1 V2 V3 36 27 24 87 V Determine I1, E, I3 and I V1 27 I1 3A R1 9 V2 I1R2 315 45V By Kirchoff’s second law E V V1 V2 27 45 72V V 72 Also I3 9A R3 8 By Kirchoff’s first law I I1 I 3 3 9 12 A I I1 V1 V I3 R1 V3 E V2 R2 R3 Power dissipated in R3 is 20W. Calculate I3, R1,I1, I2 and E a 5A V10 110 10V P 20W 10 I 3 E 20 I3 2A 10 I1 1 V1 b 1A I3 2 R1 3 R3 20 I 3 R3 2 R3 2 I2 2 d c By Kirchoff’s first law in node a R3 5 I1 5 I 2 5 3 2 A By Kirchoff’s first law in node b V1 22 R1 11 I1 2 I 2 I3 1 2 1 3A By Kirchoff’s second law in loop 2 V1 6 10 6 22V P.D across 1 is 5 X 1=5V E V 5 22 27V I Determine current I and I4 E=87V R1 8 R2 6 V1 V2 First find the total effective resistance R3 R4 16 8 Re 5.33 R3 R4 16 8 R3 16 V3 R4 8 Rt R1 R2 Re 8 6 5.33 19.33 Then V 87 I 4.5 A Rt 19.33 Using current division R3 16 I4 I 4.5 3 A R3 R4 16 8 I V Rt Determine VAB Effective resistance for parallel resistor 10 // 15 and 16//16 10 15 VAB A 12V 10 15 Ra 6 10 15 VAC VBC 6 12 6V 66 8 12 8V 8 4 B 6 16 16 C 16 16 Rb 8 16 16 Using voltage division 4 6 4 VAB A 12V VAC B 6 VBC 8 C Then VAB VAC VBC 6 8 2V I=5A A Calculate the current in each resistor Applying Kirchoff’s 2nd law for loop 1 3 1 D B 40V 40 3I1 14( I1 I 2 ) 40 17I1 14I 2 3 ---(a) Applying Kirchoff’s 2nd law for loop 2 C 0 28I I1 8I 2 3I1 28I 31I1 8I 2 But Thus I 5A 140 31I1 8I 2 2 I A 3I1 ---(b) 1 I2 D I1 2 I-I1 B 40V I1-I2 ---(b) I-I1+I2 3 C continue Solving the 2 simultaneous equations (a) X 4 160 68I1 56I 2 ---(c) (b) X 7 980 217I1 56I 2 ---(d) Then (c) + (d) 1140 285I1 I1 4 A In 3 resistor Substitute in (b) 140 124 8I 2 I2 2A In 8 resistor In 28 resistor I I1 5 4 1A In 14 resistor I1 I 2 4 2 2 A In 4 resistor I I1 I 2 5 4 2 3A I1 Calculate the current in the network I3 Applying Kirchoff’s 2nd law for loop 1 10 19I1 18I 2 1 ---(a) 10V Applying Kirchoff’s 2nd law for loop 2 20 2I 2 18I1 I 2 20 18I1 20I 2 ---(b) 100 190I1 180I 2 ---(c) (b)X 9 180 162I1 180I 2 I1 2.85 A 2 I 3 I1 I 2 20V Substitute I1 in(a) (a)x10 (d)-(c) we get 18 1 10 1I1 18( I1 I 2 ) I2 ---(d) 10 54.34 18I 2 I 2 3.57 A Current in 18 resistor I 3 3.57 2.85 0.72 A Calculate the current in the network I1 I3 Applying Kirchoff’s 2nd law for loop 2 Current in 18 resistor 18 1 20 18I 3 I2 1 2 10V 20 I3 1. 1 A 18 Applying Kirchoff’s 2nd law for outside loop 20 10 I1 1 I1 10 A Current in 1 resistor I 2 (10) 1.1 11.1A 20V A The network shown is a 3 cells having an internal resistance of 30 . Calculate the current in the network R=30 E=1.5V E=1.5V R=30 Applying Kirchoff’s 2nd law C 1.5 I 30 1.5 I 30 1.5 I 30 0 B R=30 E=1.5V 4.5 90I 0 4.5 I 0.05 A 90 The voltage drop due to internal resistor is 0.05 x30=1.5V Thus there is no potential different between two terminals Create loop’s current rather than branch current Use Kirchoff’s second (voltage ) law Ohm’s law to calculate p.d Branch is calculated by taking the algebraic sum of the loop currents Calculate the current in each branch First create loop current ,i.e I1 , I2, I3 as shown 20 30 20 40 3 30 60 50 10 60 20V 50V 40 50 1 100V I3 2 I1 100V 20V 10 I2 50V continue In loop 1 100 20 I1 60 30 50 I 2 50 I 3 30 80 140I1 50I 2 30I 3 ---(a) In loop 2 50 20 I 2 50 40 10 I1 50 I 3 40 20 70 50I1 100I 2 40I 3 3 ---(b) In loop 3 30 0 I 3 30 20 40 I1 30 I 2 4060 0 30I1 40I 2 90I 3 ---(c) I3 40 50 1 2 I1 100V 20V 10 I2 50V continue Solving these equations I 3 1.50 A I1 1.65 A I 2 2.16 A Current in 60 I1 1.65 A In direction of I1 Current in 30 I1 I 3 0.15 A In direction of I1 Current in 50 I 2 I1 0.51A In direction of I2 Current in 40 I 2 I 3 0.66 A In direction of I2 Current in 10 I 2 2.16 A In direction of I2 Current in 20 I 3 1.50 A In direction of I3 Choose reference node where all nodes can refer Assign currents going to/out the nodes Assign voltage at nodes as V1 , V2, V3….which refer to reference node Apply Kirchoff’s current law at each node Relate the voltage , resistance andcurrent using ohm’s law Solve the equations obtained node 1 Calculate V1 and V2 At node 1 1A I3 I 4 V2 5 reference I1 node 1 V1 I2 Simplified At node 2 node 2 V1 I1 I 2 I 3 V1 V1 V2 1 5 3 1 1 V2 V1 1 5 3 3 ….(a) 1A node 2 I3 I4 5 reference V1 V2 V2 3 7 V2 Simplified V1 1 1 V2 0 3 3 7 continue …..(b) 8V1 5V2 15 Substitute V2 we have 35V1 8V1 15 10 node 2 I3 I4 reference 7 V2 V1 10 10 V1 V 3 7 10 7 V2 V 10 3 3 V2 1A 7V1 V2 7 3 0 7V1 10V2 (a) X 15 5 Solve for equations (a) and (b) (b) X 21 I1 node 1 V1 I2 Node 1 V1 Calculate V1 and V2 and current in 8 At node 1 I1 I 2 I 3 4 V1 V1 V1 V2 5 15 10 5 24 6V1 2V2 3V1 3V2 ….(a) 6V Node 1 V1 I3 I2 4V 15 I1 Simplified 11V1 3V2 24 5 4V Node 2 V2 reference node Node 2 V2 I4 15 reference node I5 6V continue I1 At node 2 I3 I 4 I5 5 Node 1 V1 I3 I2 V1 V2 V2 V2 6 10 8 12 4V Node 2 V2 I5 I4 15 reference node Simplified 12V1 12V2 15V2 10V2 60 12V1 37V2 60 ….(b) Solving the simultaneous equations (a) and (b) V1 2.88V V2 2.55V I 8 V2 0.32 A 8 6V The superposition states that in any network containing more than one source , the current in , or the p.d. across in any branch can be found by considering each source separately and adding their effects: omitted sources of e.m.f are replaced by resistance equal to their internal resistances. Separating the network into several circuit contenting only one source I1 Original network 1 I1+I2 Separating into 2 networks I1b 10V 18 10V 1 I2 I2b 18 I1b+I2b 20V I1c 1 I2c 18 I1c+I2c 20V I1b Network 1 Total resistance 2 18 1 2.8 2 18 1 10V Thus V 10 I1b 3.57 A Rtotal 2.8 18 3.57 3.21A 2 18 and I 2b Also I1b I 2b 3.57 3.21 0.36 A I2b 18 I1b+I2b I1c Network 2 Total resistance 118 2 2.95 1 18 Thus V 20 I 2c 6.78 A Rtotal 2.95 and 18 I1c 6.78 6.42 A 1 18 Also 1 I 2c I1c 6.78 6.42 0.36 A I2c 18 I1c+I2c 20V I1 combination 1 10V I2 18 I1+I2 20V Thus I1 I1b I1c 3.57 6.42 2.85 A and I 2 I 2b I 2c 3.21 6.78 3.57 A Also I1 I 2 2.85 3.57 0.72 A