Download Signal Conditioning Circuits :Power Supplies

Document related concepts

Multimeter wikipedia , lookup

Telecommunication wikipedia , lookup

Superheterodyne receiver wikipedia , lookup

Oscilloscope wikipedia , lookup

Surge protector wikipedia , lookup

Battle of the Beams wikipedia , lookup

Audio crossover wikipedia , lookup

Signal Corps (United States Army) wikipedia , lookup

Schmitt trigger wikipedia , lookup

Phase-locked loop wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Regenerative circuit wikipedia , lookup

Power electronics wikipedia , lookup

Amplifier wikipedia , lookup

Oscilloscope types wikipedia , lookup

Operational amplifier wikipedia , lookup

HD-MAC wikipedia , lookup

Cellular repeater wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Valve audio amplifier technical specification wikipedia , lookup

Analog television wikipedia , lookup

Oscilloscope history wikipedia , lookup

Index of electronics articles wikipedia , lookup

Rectiverter wikipedia , lookup

Radio transmitter design wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

High-frequency direction finding wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
Signal Conditioning Circuits
:Power Supplies
คณะวิศวกรรมศาสตร์
มหาวิทยลัยธรรมศาสตร์
Measurement and Instrumentation
Electronic measurement system
Power
supply
Transducer
Conditioning
circuits
Amplifier
Data
processor
For engineering analysis
- Graphs or Tables
Controller
Process control
Recorder
Command
generator
Power Supplies
 Some transducers need the power supply in order to convert the
sensed information from the sensor into the electrical signal.
Power
supply
Transducer
Signal Conditioning
 Power supplies for instruments
1. Battery supplies
2. Line voltage supplies
Battery supplies
 widely used and inexpensive
 voltage declines after used
 voltage regulating circuit required
Voltage regulating circuits
Ebatt.
Eo
Simple voltage regulator
Output voltage = Zener voltage
Zener diode
is a type of diode that permits current not only in the forward
direction like a normal diode, but also in the reverse direction if the
voltage is larger than the breakdown voltage known as "Zener
voltage”
(Breakdown voltage)
P
N
Line voltage supplies
take the (high) voltage from a wall outlet and lower its into the desired
(low) voltage. The (low) alternating voltage is converted to direct voltage and
is then regulated.
220Vac
Power line
220 Vac at 50 Hz
Transformer
Low voltage
Vac
Rectifier
Unregulated
Vdc
Regulator
Regulated
Vdc
Transformer is a device that transfers electrical energy from one circuit to
another through inductively coupled conductors – The transformer’s coils.
Vs
Vp
=
Ns
Step-up transformer
Np
Step-down transformer
Ns
Np
Ns
Np
>
1
<
1
Rectifier is an electrical device that converts alternating current (AC),
which periodically reverses direction, to direct current (DC), which is in
only one direction
Vdc = Vav = 2Vp/
Vrms = Vp/2
Voltage regulator is an electrical regulator designed to automatically
maintain a constant voltage level
Three pin 12 V DC voltage regulator IC.
Signal Conditioning Circuits
:Bridge Circuits
คณะวิศวกรรมศาสตร์
มหาวิทยลัยธรรมศาสตร์
Measurement and Instrumentation
Bridge circuits
 have been devised for measuring capacitance, inductance, and
most often for measuring resistance. A purely
resistance bridge, called a “Wheatstone bridge”, provides a
means for accurately measuring resistance, and for detecting
small changes in resistance.
Galvanometer
Bridge’s analysis
The basic arrangement for a bridge circuit is shown in the figure below. A
dc voltage is applied as an input across nodes A to D, and the bridge forms a
parallel circuit arrangement between these two nodes. The currents flowing
through the resistors R1 to R4 are I1 to I4 , respectively. Under the condition
that the current flow through the galvanometer, Ig = 0, the bridge is in a
balanced condition.
For a balanced bridge:
R2
R4
=
R1
R3
If the resistor R1 is a transducer, a change in
resistance, associated with a change in some
physical variable, causes an unbalance of the
bridge.
Bridge’s analysis
1. Null Method
R1 is the resistance of the transducer
R2 is the resistance of the adjustable resistor
Ig = 0
R1
Principle: If the resistance R1 varies
with changes in the measured variable,
one of the other arms of the bridge can
be adjusted to null the circuit and
determine resistance.
1. Null Method
The resistance R2 must be calibrated such that the adjustments
directly indicate the value of R1
M
Transducer
R1
(unknown)
Wheatstone bridge
Null Method
R2
(known)
Advantages:
1. no need to know the input voltage.
2. current detector required (Galvanometer) to detect Ig
Disadvantages:
1. sensitivity depending on the galvanometer
2. uncertainty in the measured resistance depending on the input
voltage
Uncertainty, uR  1/Ei
Bridge’s analysis
2.
Deflection Method
R1 is the resistance of a transducer
R1
Principle: a voltage measuring device is used
to measure the voltage unbalance in the bridge
(the voltage drop from B to C) as a n indication
of the change in resistance.
1
1
3
2
3
4
2. Deflection Method
M
Transducer
R
Eo
Wheatstone bridge
Deflection Method
For identical resistors,
R1 = R2 = R3 = R4 = R
R1
EEo
Under balanced conditions (Ig = 0),
Eo = 0
In an unbalanced condition,
/
4
2
/
Advantage: can be used to measure time-varying signals, but the voltage
measuring device must have the frequency response not less than that of
the sensor.
Disadvantage:
1. high capability of the galvanometer required.
2. known and regulated input voltage required.
In case of the low impedance galvanometer, Rg
/
4
/
4 1
/
Example 1 Null method
A certain temperature sensor experiences a change in electrical resistance
with temperature according to the equation
1
where R
R0
T
=
sensor resistance []
= sensor resistance at the ref. temperature T0 []
= measuring temperature [°C]
 = constant = 0.00395 °C-1
Given:
1) R3 = R4 = 500 
2) R0 = 100  at T0 = 0°C
Determine the value of R2 that would balance the bridge at 0 °C
Solution
R1
Under balanced condition,
R2 = R1 (R4 /R3 ) = R1
R3 = R4 = 200 
160
140
R2
120
100
80
60
0
20
40
60
Temperature [C]
80
100
Example 2 Deflection method
Consider a deflection bridge, which initially has all arms of the bridge equal to 100 ohms,
with the temperature sensor described in Example 1. The input voltage to the bridge is
10V. If the temperature of R1 is changed such that the bridge output is 0.569 V, what is
the temperature of the sensor? How much current flows through the sensor and how
much power must it dissipate?
Solution
At deflection state,
Eo
= 0.569
V
A change in the resistance of the sensor can be
obtained from
/
4
2
/
We obtain
R ohms
Therefore, the temperature of the sensor is
1
0
100
0
25.67
1
0.00395
100 1
0.00395
65
By Kirchoff’s law, the current flowing through R1 is
given by
1
1
1
2
44.3
The power dissipated from the sensor is
1
2
1
1
0.25
0
0
Solution
R1
Under balanced condition,
R
EEo
R
0
R
/
0
/
4
2
1
0.00395
0
1.0
Ei = 10 V
 E0 [V]
0.8
0.6
0.4
0.2
0.0
0
20
40
60
Temperature [C]
80
100
Types of Wheatstone’s bridges
 Quarter bridge
Types of Wheatstone’s bridges
 Half bridge
Benefits
- Compensation of interference effects, especially temperature effects
- Increase of the static sensitivity
Types of Wheatstone’s bridges
 Full bridge
Benefits
- Compensation of interference effects, especially temperature effects
- Increase of the static sensitivity
3-wire circuit analysis
Initially,
If
R1  RK R4

where R1  R2  R3  R4  R
R2  RK R3
R1  0
then
vo 
1  R1
vs 
4  R  RK



vo  0
Signal Conditioning Circuits
:Amplifiers
คณะวิศวกรรมศาสตร์
มหาวิทยลัยธรรมศาสตร์
Measurement and Instrumentation
Amplifiers
 Is a device that scales the magnitude of an analog input signal according to
the relation
Vo = G x Vi
Input voltage, Vi
where G = Gain
Output voltage, Vo
Supply voltage, Vs
1
1
0.8
0.8
0.6
vi
0.6
vo
0.4
0.2
0.4
0.2
0
0
2
4
6
t
8
10
0
0
2
4
6
t
8
10
Types of amplifier
1. Single-ended amplifiers
are amplifiers which amplify a single input signal. Both input and output
signal voltages are referenced a common connection in the circuit called
ground. (used for potentiometer circuits)
2. Differential amplifiers
are amplifiers which amplify two input signals. All voltages are referenced to
the circuit's ground point. (used for bridge circuits)
Vs
Vs
G
Vi
G
Vo
Vo = G x Vi
Single-ended amplifiers
Vi,1
Vo
Vi,2
Vo = G (Vi,1- Vi,2)
Differential amplifiers
Operational Amplifiers (op-amp)
 An “op-amp” is a high-gain electronic voltage amplifier with a differential
input and, usually, a single-ended output.
 Characteristics of op-amps
1. High internal gain G = 105 to 106
2. High input impedance Zi > 107 
3. Low output impedance Zo < 100 
4. two input ports, a noninverting and an inverting input, and one output port
Non-inverting terminal
(+5V)
Inverting terminal
(-5V)
Vo = G (Vnon-inv - Vinv)
Summing amp.
Non-inverting amp.
Inverting amp.
Differentiator
Integrator
Voltage Follower
Inverting Amplifier:
Circuit analysis
Rf
Rf
R1
Vi
if
i1 A ia
Vo
Va
Ra
Sum of currents at Node A
1
1
1
Output voltage of the inverting amplifier
≅
1
Non-inverting Amplifier:
≅1
Summing Amplifier:
Voltage follower:
≅
1
,1
,2
,3
1
2
3
1
***
Differentiator:
Integrator:
1
1
1
0
Signal Conditioning Circuits
:Filters
คณะวิศวกรรมศาสตร์
มหาวิทยลัยธรรมศาสตร์
Measurement and Instrumentation
Filters
 In many instrumentation applications, the (dynamic) signal from the
transducer is combined with noise or some other parasitic signal. These
undesired signals can be eliminated with a filter that is designed to attenuate
the noise signals but transmit the transducer signal without distortion.
 Two filters that utilize passive components and are commonly employed in
signal conditioning include (1) High-pass RC filter and (2) Low-pass RC filter
C
R
R
C
RC filter circuits
Filters
High-pass filter
Unfiltered signal with low frequency
variation and high frequency noise
Filtered signal
High-pass filter employed to
remove low frequency variation
Low-pass filter
Low-pass filter employed to remove
high frequency noise
High-pass RC filters
 High-pass filter permits only frequencies above the cutoff frequency to pass.
Consider a summation of voltage drops around the loop
0 If
| |
and
High pass
0
The output voltage Vo is
Passband
2
1
| |
where
2
~0
1
if 


Stopband
Low-pass filters
 Low-pass filter permits only frequencies below the cutoff frequency to pass while
blocking the passage of frequency information above the cut off frequency.
The output voltage is
1
2
1
| |
Passband
where
1
~0
ถ ้า  
Stopband
Cut-off frequency
 is defined as the frequency at which the ratio of the amplitudes of the output to the
input has a magnitude of 0.02 (2% error).
For examples,
(1) Hi-pass filter
C = 5/RC
 fC
= 5/(2RC)
C = 0.203/RC
 fC
= 0.203/(2RC)
|Vo|/|Vi| = CRC/[1+(CRC)2]1/2 = 0.02 
(2) Lo-pass filter
|Vo|/|Vi| = 1/[1+(CRC)2]1/2 = 0.02 
Active filters
 Operational amplifiers are employed to construct active filters where select
frequencies can be attenuated and the signal amplified during the filtering
process.
R2
C2
R1
Vi
R2
C1
741
+
Vo
Low-pass active filter
1
2
2 2
Vi
R1
741
+
Vo
High-pass active filter
1
2
1 1
Signal Conditioning Circuits
:Modulators and Demodulators
คณะวิศวกรรมศาสตร์
มหาวิทยลัยธรรมศาสตร์
Measurement and Instrumentation
Amplitude Modulators
 Amplitude modulation is a signal conditioning process in which the
signal from a transducer is multiplied by a carrier signal of constant
frequency and amplitude.
Transducer signal
(sinusoidal, transient, or random)
sin
x
Carrier signal
(sinusoidal, transient, or random)
sin
Modulated signal
sin
2
sin
cos
cos
In general, noise signals occur at 50-Hz
4000
50
3950
4050
Amplitude Modulators
Advantages
(1) Stability
(2) Low power
(3) Noise suppression
Demodulation is the process that the transducer signal is separated from
the carrier signal.
Rectifier
Filter
Assignment #3
1. Shown that the output voltage of the summing amplifier be expressed by the
equation
,1
,2
,3
1
2
3
2. Consider the Wheatstone bridge. Suppose R3 = R4 = 200 R2 = variable
calibrated resistor, and R1 = transducer resistance = 40x + 100
a) When x = 0, what is the value of R2 required to balance the bridge?
b) If the bridge is operated in a balanced condition in order to measure x,
determine the relationship between R2 and x.
Fundamental of Sampling, Data
Acquisition and Digital Devices
คณะวิศวกรรมศาสตร์
มหาวิทยลัยธรรมศาสตร์
Measurement and Instrumentation
Sampling concepts
Conversion of analog signals to digital code is extremely important
in any instrument system that involves digital processing of the analog
output signals from the signal conditioners.
Discrete
Signal
Continuous
Signal
“discrete time series”
Discrete time series
 Suppose the transducer signal is measured repeatedly at successive
sample time increments t
1, 2, 3, … ,
total sample period
sample rate
Sample rate
fs = 1/t
[Hz]
The sample rate has a
significant effect on perception
and reconstruction of the
continuous analog signal in the
time domain
fm = 10 Hz (sine wave analog signal)
fs = 100 Hz
fs > 2 fm

t < 1/(2 fm )
*** s = sampling
m = measuring
fs = 27 Hz
fs = 12 Hz
Alias Frequencies
 When the sample rate is less than 2fm , the higher frequency content
of the analog signal will take on the false identity of a lower frequency in the
resulting discrete series. A false frequency is called an “alias frequency”.
sample rate 12 Hz
Original signal
10 Hz
Interpreted signal
2 Hz
Folding Diagram
is the diagram that is used to
find the alias frequency.
Example
1.67
f = 10 Hz
[f/fN]y-axis= 10/6 = 1.67
fN = 6 Hz
[f/fN]x-axis = 0.33 Hz
falias = 0.33 x fN = 2 Hz
0.33
Nyquist frequency and Anti-Aliasing
 Nyquist frequency is the highest frequency that can be coded at a
given sampling rate in order to be able to fully reconstruct the signal,
fN = 0.5 fs
 Anti-aliasing is a process that remove signal content at and above Nyquist
frequency by use of a low-pass filter prior to sampling and use an appropriate
sample rate for the signal
Signal =
Signal [f < fN ] + Signal [f > fN ]
Anti-aliasing filter
Example
 Consider a complex periodic signal in the form
10 sin 50
0.5 sin 150
1.2 sin 250
15
10
ym
5
10 sin ()
y(t)
0.5 sin()
1.2 sin()
0
0
20
40
60
80
‐5
‐10
‐15
t
100
120
140
Example (cont.)
 If the signal is sampled at 100 Hz
fN = 0.5 fs = 0.5 x 100 Hz = 50 Hz
 Observe all frequency content in the sampled signal
10 sin 50
f1 = 25 Hz
0.5 sin 150
f2 = 75 Hz
1.2 sin 250
f3 = 125 Hz
fN < fm
Alias frequency
Example (Cont.)
 Sampled signal
10 sin 50
0.5 sin 50
1.2 sin 50
Alias frequency = 25 Hz
15
10
ys
5
ym
y(t)
10 sin ()
0
0
20
40
60
80
‐5
‐10
‐15
t
100
120
140
Example (cont.)
 Use a low-pass filter with the cut-off frequency > 50 Hz
10 sin 50
15
ym
yA = 10sin()
10
y(t)
5
0
0
20
40
60
80
‐5
‐10
‐15
t
100
120
140
Amplitude Ambiguity
 The sampling signal can be completely reconstructed from a discrete
time series, if
(1) Total sample period remains an integer multiple of the fundamental
period, T1
mT1 = N  t
(2) Sample rate meets the sampling criterion.
fs > 2 fm
Note: N = 2M: M = # of sample points
(8-bit)
Example
10cos 2 100
f = (Nt)-1 = fs/N = 39 Hz
Amplitude = 10
Fundamental period T1 =1/ 100 s
(a)
m = N t / T
1
= 2.56
amplitude leakage
(b)
m = N t / T
1
= 10.24
amplitude leakage
(c)
m = N t / T
1
No leakage
Amplitude spectra
= 8
Selecting sample rate and data number
 For an exact discrete representation in both frequency and
amplitude of analog signal, both the number of data points
and the sample rate should be chosen based on the
following criteria: (1) fs > 5 fm (2) long total sample
periods (large N) and (3) use of anti-alias filter.
Data-Acquisition System (DAS)
is the portion of a measurement system that quantifies and stores
data. A typical signal flow scheme is shown in the following diagram.
Data-Acquisition System components
A/D
converter
Signal flow scheme for an automated data-acquisition system
Signal Conditioning: Filters and
Amplification
 Filters
1. Analog filters are used to control the frequency content
of the signal being sampled.
Example: Anti-alias filter
2. Digital filters, which are software-based algorithms, are
effective for signal analysis after sampling
Example: moving-averaging scheme (for removing noise)
∗
⋯
1
1
⋯
/ 2
1
Signal Conditioning: Filters and
Amplification
 Amplifiers
All DASs are input range limited; that is, there is a minimum value
and a maximum value of signal. Some transducer signals will need
amplification or attenuation prior to conversion. Most DASs contain
on-board instrumentation amplifiers.
Voltage divider
for signal attenuation
0-50 V signal
0-10 V A/D converter
R1 = 40 k
R2 = 10 k
Signal Conditioning: Filters and
Amplification
 Shunt circuits
An A/D converter requires a voltage signal at its input. It is
straightforward to convert current signals into voltage signals
using a shunt resistor.
In general, the standard
current signal has a range of
4 – 20 mA
Using a shunt resistor = 250
the current signal would be
converted into the voltage
signal
1–5V
Signal Conditioning: Filters and
Amplification
 Multiplexer
When multiple input signal lines are connected by a common
throughout line to a single A/D converter, a multiplexer is used to
switch between connections, one at a time.
 A/D Converters
convert the analog signals into the digital signals with conversion
rates typically up to the 1 kHz – 10 MHz range . The input
resolution, Q which depends on the number of bits of the converter,
is given by
2
Example A12 bit A/D converter
with input signal range of 0-10V.
The resolution
where EFSR = Full scale voltage range
M = resolution in bits
Q = 10/212 = 2.44 mV
The amplifier permits signal
conditioning with gains from G =
0.5 to 1000
The minimum detectable voltage
when set at maximum gain is
3-bits resolution
Q = 2.44 mV / 1000 = 2.44 V
Analog signal input connections
Single-ended connection
Suitable only when all of the analog
signals can be made relative to the
common ground point.
Differential-ended connection
Allow the voltage difference between
two distinct input signals to be
measured
Example
+
V
signal
O
-
Vi
Strain gage (Rg) , S = 2.5V/
A signal from the strain gage with the sensitivity = 2.5V/is connected
to DAS which has the 12-bit A/D converter, an input range of ± 5V, and
sample rate of 1000 Hz. For an expected measurement range of 1-500
, specify appropriate G for amplifier, filter type and cut-off frequency.
Amplifier
Resolution = 10/212 = 2.44 mV
Signal Range = (1 - 500 ) x 2.5 V/ = 2.5 V – 1.25 mV
G = 1000:
Amplified Signal = (2.5V – 1.25 mV) x 1000 = 2.5 mV – 1.25 V
G = 3000:
Amplified Signal = (2.5V – 1.25 mV) x 3000 = 7.5 mV – 3.75 V
Filter
f
Sample rate, s = 1000 Hz
f
Nyquist frequency , N = 1000/2 = 500 Hz
*** Low-pass filter with a cut-off frequency = 500 Hz required
*** Differential-ended connections required
Final Examination on OCT 8, 2011 (1300-1600)
 Closed books and closed notes
 Non-programmable calculators are permitted
 Electronic dictionaries are not permitted
 7 questions (10 marks each)
Data Logger
 คืออุปกรณ์อิเล็คทรอนิคส์ซงึ่ ทําหน้ าที่บนั ทึกและจัดเก็บข้ อมูลที่ตรวจวัด
จากเครื่ องมือวัดหรื อเซนเซอร์ ตา่ งๆ ปั จจุบนั Data logger ใช้ พื ้นฐาน
ของระบบประมวลผลแบบดิ จิ ต อล ส่ ว นประกอบที่ สํ า คั ญ คื อ
ไมโครโปรเซสเซอร์ หน่วยความจํา และเซนเซอร์ สามารถแบ่งออกได้ เป็ น 2
ลักษณะคือ
- General purpose types
- Specific devices
ข้ อ ดี 1. ทํางานด้ วยตัวเอง (Stand-alone)
2. เคลื่อนย้ ายง่าย (Portable)
3. บันทึกข้ อมูล 24 ชัว่ โมง
4. สามารถใช้ กบั DC power
http://www.dataq.com/images/products/data-logger/gl200_500w.jpg
ตัวอย่าง Data logger
ตัวอย่าง ข ้อมูลจําเพาะ Data logger
ตัวอย่าง ข ้อมูลจําเพาะ Data logger (ต่อ)
Grounds, Shielding, and connecting
wires
 การเชื่อมต่อสายสัญญาณในอุปกรณ์อิเล็กทรอนิคส์อาจเป็ นสาเหตุของการเกิด
สัญญาณรบกวน (noise) ในระบบ
 สัญญาณรบกวนจะมีผลมากในสัญญาณที่มีกําลังตํ่า (< 100 mv)
วิธป
ี ้ องกันสัญญาณรบกวน
้ สุ
่ ด
1. ใช ้สายสัญญาณให ้สันที
2. ไม่ให ้สายสัญญาณอยูใ่ กล ้แหล่งสัญญาณรบกวน
3. ใช ้ชีล (shield) ป้ องกันและต่อสายลงดิน (ground)
4. บิดสายเป็ นเกลียว
Ground and Ground loop
 Ground คือจุดอ้ างอิงในวงจรไฟฟ้าใช้ ในการเปรี ยบเทียบแรงดันไฟฟ้า โดยทัว่ ไป
Ground จะเป็ นเส้ นทางเดินของกระแสลงสูพ
่ ื ้นดิน ( earth ground) ซึง่ มีคา่ แรงดันไฟฟ้า
เท่ากับศูนย์
 Ground potential อาจมีคา่ ต่างกันขึ ้นกับจุดเชื่อมต่อ (เช่น อุปกรณ์ อาคาร และพื ้นดิน)
 สายดินที่ความยาวมากๆ อาจเป็ นทําหน้ าที่เหมือนกับ เสาอากาศ (Antennae)
Ground Symbols
Signal
ground
Chassis
ground
Earth
ground
Ground loop
 Ground loop เป็ นสาเหตุมาจากการเชื่อมต่อ ground ของหลายวงจรเข้ ารวมกัน โดย
Ground potential ของวงจรที่ตอ่ ร่วมกันมีคา่ ไม่เท่ากัน
 ผลต่างของศักย์ไฟฟ้าที่เกิดใน Ground loop ส่งผลให้ เกิดการไหลของกระแสใน
สายสัญญาณ นําไปสูส่ ญ
ั ญาณรบกวนในระบบ
Signal current
Ground current
วิธีป้องกัน ground loop
 มีการต่อสายดินเพียง 1 จุด (single-point ground)
 ติดตัง้ Isolation transformer ( 1:1 power transformer AC signal ผ่านได้ เท่านัน)
้
 ใช้ Shield ป้องกันสัญญาณรบกวนหากสัญญาณส่งมีกําลังตํ่า
่ ถก
การต่อ Shield ป้ องกันทีไม่
ู ต ้อง
่ กต ้อง
การต่อ Shield ป้ องกันทีถู
่
้านสายส่งสัญญาณด ้านเดียว)
(ต่อสาย ground ของShield ป้ องกันทีปลายด